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1Laboratoire de Physique Théorique (UMR du CNRS 8627),
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We study various statistical properties of real roots of three different classes of random polynomials
which recently attracted a vivid interest in the context of probability theory and quantum chaos.
We first focus on gap probabilities on the real axis, i.e. the probability that these polynomials have
no real root in a given interval. For generalized Kac polynomials, indexed by an integer d, of large
degree n, one finds that the probability of no real root in the interval [0, 1] decays as a power law

n−θ(d) where θ(d) > 0 is the persistence exponent of the diffusion equation with random initial
conditions in spatial dimension d. For n ≫ 1 even, the probability that they have no real root
on the full real axis decays like n−2(θ(2)+θ(d)). For Weyl polynomials and Binomial polynomials,
this probability decays respectively like exp (−2θ∞

√
n) and exp (−πθ∞

√
n) where θ∞ is such that

θ(d) = 2−3/2θ∞
√

d in large dimension d. We also show that the probability that such polynomials
have exactly k roots on a given interval [a, b] has a scaling form given by exp (−Nab ϕ̃(k/Nab)) where
Nab is the mean number of real roots in [a, b] and ϕ̃(x) a universal scaling function. We develop
a simple Mean Field (MF) theory reproducing qualitatively these scaling behaviors, and improve
systematically this MF approach using the method of persistence with partial survival, which in
some cases yields exact results. Finally, we show that the probability density function of the largest
absolute value of the real roots has a universal algebraic tail with exponent −2. These analytical
results are confirmed by detailed numerical computations. Some of these results were announced in
a recent letter [G. Schehr and S. N. Majumdar, Phys. Rev. Lett. 99, 060603 (2007)].

PACS numbers: 02.50.-r, 05.40.-a,05.70.Ln, 82.40.Bj

I. INTRODUCTION

Despite several decades of research, understanding the zero crossing properties of non-Markov stochastic processes
remains a challenging issue. Among them, the persistence probability p0(t) received a particular attention, especially in
the context of many-body non-equilibrium statistical physics, both analytically [1] as well as experimentally [2, 3, 4, 5].
The persistence p0(t) for a time dependent stochastic process with zero mean is defined as the probability that it has
not changed sign up to time t. In various physical situations, p0(t) has a power law tail p0(t) ∼ t−θ where θ turns out
to be a non-trivial exponent whenever the stochastic process under study has a non Markovian dynamics. One such
example is the diffusion, or heat equation in space dimension d where a scalar field φ(x, t) evolves according to the
deterministic equation

∂tφ(x, t) = ∇2φ(x, t) , (1)

with random initial conditions φ(x, t = 0) = ψ(x) where ψ(x) is a Gaussian random field of zero mean with delta
correlations [ψ(x)ψ(x′)]ini = δd(x − x′). We use the notation [...]ini to denote an average over the initial condition.
For a system of linear size L, the persistence p0(t, L) is the probability that φ(x, t), at some fixed point x in space,
does not change sign up to time t. The initial condition being (statistically) invariant under translation in space, this
probability does not depend on the position x. In the scaling limit t≫ 1, L≫ 1 keeping the ratio t/L2 fixed, it was
found in Ref. [6] that p0(t, L) takes the scaling form

p0(t, L) ∝ L−2θ(d)h(L2/t) , (2)

where h(u) ∼ cst, a constant independent of L and t, for u ≪ 1 and h(u) ∝ uθ(d) for u ≫ 1 where θ(d) is a
d-dependent exponent. This implies that in the L → ∞ limit, p0(t) ≡ p0(t, L → ∞) ∼ t−θ(d) for large t. It
was shown in Ref. [6] that the probability P0(T ) that a Gaussian stationary process (GSP) with zero mean and
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correlations [cosh(T/2)]−d/2 decays for large T as P0(T ) ∼ exp [−θ(d)T ] where θ(d) is the same as the persistence
exponent in diffusion equation. This exponent θ(d) was measured in numerical simulations [6, 7], yielding for instance
θsim(1) = 0.12050(5), θsim(2) = 0.1875(1). The case of dimension d = 1 is particularly interesting because θ(1) was
determined experimentally using NMR techniques to measure the magnetization of spin polarized Xe gas [5], yielding
θexp(1) = 0.12 in good agreement with numerical simulations. In the limit of large dimension d, which will be of

interest in the following, one can show that θ(d) = 2−3/2θ∞
√
d where θ∞ is the decay constant associated with the

no zero crossing probability of the GSP with Gaussian correlations exp (−T 2/2), which was studied in the past by
engineers, in particular in the context of fading of long-wave radio signals (see for instance Ref. [8]).

A seemingly unrelated topic concerns the study of random algebraic equations which, since the first work by
Bloch and Pólya [9] in the 30’s, has now a long story [10, 11]. Recently it has attracted a renewed interest in
the context of probability and number theory [12] as well as in the field of quantum chaos [13]. In a recent letter
[14], we have established a close connection between zero crossing properties of the diffusion equation with random
initial conditions (1) and the real roots of real random polynomials (i.e. polynomials with real random coefficients).
In Ref. [14], we focused on a class of real random polynomials Kn(x) of degree n, the so called generalized Kac
polynomials, indexed by an integer d

Kn(x) = a0 +
n
∑

i=1

ai i
d−2
4 xi . (3)

Here, and in the following, ai’s are independent real Gaussian random variables of zero mean and unit variance
〈aiaj〉 = δij where we use the notation 〈...〉 to denote an average over the random coefficients ai. In the case of d = 2,
these polynomials reduce to the standard Kac polynomials [15], which have been extensively studied in the past (see
for instance Ref. [12] for a recent review). In that case, we will see below that the statistics of real roots of Kn(x) is
identical in the 4 sub-intervals [−∞,−1], [−1, 0], [0, 1] and [1,+∞]. Instead, for d 6= 2, which was studied in Ref. [16],
the statistical behavior of real roots of Kn(x) depend on d in the inner intervals, while it is identical to the case
d = 2 in the outer ones. Focusing on the interval [0, 1], we asked the question : what is the probability P0([0, x], n),
0 < x < 1, that Kn(x) has no real root in the interval [0, x] ? Such probabilities were often studied in the context of
random matrices, where they are known as gap probabilities [17] and in a recent work [18], Dembo et al. showed that,
for random polynomials Kn(x) with d = 2, P0([0, 1], n) ∝ n−ζ(2) where the exponent ζ(2) = 0.190(8) was computed
numerically. In Ref. [14], by mapping these two random processes (1) and (3) onto the same GSP, we showed that in
the limit 1 − x≪ 1 ≪ n keeping n(1 − x) fixed, one has (similarly to Eq. (2))

P0([0, x], n) ∝ n−θ(d)h−(n(1 − x)) , (4)

with h−(y) → 1 for y ≪ 1 and h−(y) ∼ yθ(d) for y ≫ 1, yielding in particular P0([0, 1], n) ∝ n−ζ(d) thus identifying
ζ(d) = θ(d). We then extended our study to the probability Pk([0, 1], n) that generalized Kac polynomials have
exactly k real roots in [0, 1] and we showed that it has an unusual scaling form (for large k, large n, but keeping the
ratio k/ logn fixed)

Pk([0, 1], n) ∝ n
−ϕ̃

„

k
log n

«

, (5)

where ϕ̃(y) is a large deviation function, with ϕ̃(0) = θ(d). In both cases, our numerical analysis suggested that h−(y)
and ϕ̃(y) are universal in the sense that they are independent of the distribution of ai provided 〈a2

i 〉 is finite. The
purpose of the present paper is twofold : (i) we will give detailed derivations of the results announced in Ref. [14]
together with some new results, like the distribution of the largest real root, for generalized Kac polynomialsKn(x) (3),
(ii) we extend these results (4, 5) to two other classes of random polynomials which were recently considered in the
literature. First we will study Weyl polynomials Wn(x) defined as

Wn(x) =

n
∑

i=0

ai
xi

√
i!
. (6)

Recently, the distribution of complex zeros of Weyl polynomials with complex coefficients were observed experimentally
in a degenerate rotating quasi-ideal atomic Bose gas [19]. Here we will focus instead on the real roots of such
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polynomials (6) with real coefficients. Besides, we will consider binomial polynomials Bn(x) defined as

Bn(x) =

n
∑

i=0

ai

√

(

n

i

)

xi . (7)

As is pointed out by Edelman and Kostlan [12], ”this particular random polynomial is probably the more natural
definition of a random polynomial”. In the literature, they are sometimes called SO(2) random polynomials because
their m-point joint probability distribution of zeros is SO(2) invariant for all m [20]. We will show below that the
gap probabilities for these classes of random polynomials (6, 7) are closely related to the persistence probability for
the diffusion equation in the limit of large dimension. Our main results, together with the layout of the paper, are
summarized below.

1. In section II, we briefly recall the main properties of the persistence probability, p0(t, L), for the diffusion
equation with random initial conditions. In section II-A, we recall the finite size scaling for p0(t, L) in dimension
d whereas in section II-B, we focus on the limit d→ ∞.

2. Section III is devoted to real random polynomials, where our main results are presented. In section III-A,
we present a detailed study of the density of real roots for these three classes of polynomials, which turns
out to behave quite differently in all the the three cases under investigations (3, 6, 7) . In section III-B, we
will turn to the analysis of gap probabilities, which we will first analyse from the point of view of two-point
correlations. Next, we will present a mean field approach, or Poissonian approximation, which neglects the
correlations between the real roots of these polynomials, to compute the gap probabilities. We will further show
how this mean field approximation can be systematically improved using the persistence probability with partial
survival [21], which in some cases even yields exact results. In particular we show that the probability q0(n)
that these polynomials have no root on the full real axis is given by

q0(n) ∼ n−2(θ(d)+θ(2)) for Kn(x) ,

q0(n) ∼ exp (−2θ∞
√
n) for Wn(x) ,

q0(n) ∼ exp (−πθ∞
√
n) for Bn(x) . (8)

In section III-C, we will then generalize this study to the probability that these polynomials have exactly k real
roots on a given real interval. Extending the results obtained in Ref. [14] for Kn(x) like in Eq. (5), to Weyl and
Binomial polynomials, we will show that the probability qk(n) that Wn(x) and Bn(x) have exactly k roots on
the full real axis has a scaling form (for large k, large n, but keeping the ratio k/

√
n fixed) given by

qk(n) ∼ exp [−
√
nϕ̃
(

k/
√
n
)

] , (9)

where ϕ̃(y) is a large deviation function, which depends on the polynomials under considerationWn(x) or Bn(x).
We will also show that these scaling forms in Eq. (5, 9) can be qualitatively described by the aforementioned
mean field approximation. To end up, we study in section III-D the probability density (p.d.f.) pmax(x) of the
largest absolute value of the real roots and obtain the exact asymptotic result

pmax(x) ∝
1

x2
, x≫ 1 , (10)

for all the three classes of random polynomials under investigation. All our analytical results will be verified by
numerical computations and some details of the analytical computations involved in this section have been left
in Appendices A,B, C, D and E.

3. Finally section IV contains our conclusions and perspectives.
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II. A BRIEF OVERVIEW ON PERSISTENCE FOR DIFFUSION EQUATION IN DIMENSION d

A. Persistence exponent θ(d) and finite size scaling

We consider a scalar field φ(x, t) in a d-dimensional space which evolves in time under the diffusion equation (1).
For a system of linear size L, the solution of the diffusion equation in the bulk of the system is

φ(x, t) =

∫

|y|≤L

dy G(x − y, t) ψ(y) , G(x) = (4πt)−d/2 exp (−x2/4t) , (11)

where ψ(x) = φ(x, 0) is the initial uncorrelated Gaussian field. Since Eq. (11) is linear, φ(x, t) is a Gaussian variable
for all time t ≥ 0. Therefore its zero crossing properties are completely determined by the two time correlator
[φ(x, t)φ(x, t′)]ini. To study the persistence probability p0(t, L) it is customary to study the normalized process

X(t) = φ(x, t)/[φ(x, t)2 ]
1/2
ini [1]. Its autocorrelation function a(t, t′) = [X(t)X(t′)]ini is computed straightforwardly

from the solution in Eq. (11). One obtains a(t, t′) ≡ a(t̃, t̃′) with t̃ = t/L2, t̃′ = t′/L2 and

a(t̃, t̃′) =







(

4t̃t̃′

(t̃+t̃′)2

)d/4

, t̃, t̃′ ≪ 1

1 , t̃, t̃′ ≫ 1 .
(12)

We first focus on the time regime t̃, t̃′ ≪ 1. In terms of logarithmic time variable T = log t̃, X(T ) is a GSP with
correlator

a(T, T ′) ≡ a(T − T ′) = [cosh(|T − T ′|/2)]−d/2 , (13)

which decays exponentially for large |T − T ′|. Thus the persistence probability p0(t, L), for t ≪ L2, reduces to the
computation of the probability P0(T ) of no zero crossing of X(T ) in the interval [0, T ]. It is well known [22] that if
a(T ) < 1/T at large T then P0(T ) ∼ exp[−θT ] for large T where the decay constant θ depends on the full stationary
correlator a(T ). Reverting back to the original time t̃ = eT , one finds p0(t, L) ∼ t−θ(d), for t ≪ L2. In the opposite
limit t≫ L2, one has p0(t, L) → AL, a constant which depends on L. These two limiting behaviors of p0(t, L) can be
combined into a single finite size scaling form as in Eq. (2).

Despite many efforts, there exists no exact result for θ(d). However various approximation methods have been de-
veloped to estimate it. One of the most powerful is the so called Independent Interval Approximation (IIA) [23],
which assumes the statistical independence of the intervals between successive zeros of φ(x, t). This gives e.g.

θIIA(1) = 0.1203..., θIIA(2) = 0.1862... [6] in remarkable agreement with numerical simulations. A more systematic
approach is via persistence with partial survival [21], which we will use below (see section III-B). An alternative
systematic approach consists in performing a small d expansion [24] yielding θ(d) = d/4 − 0.12065...d3/2 + ..., which
would certainly require higher order terms to make it numerically competitive. Yet another systematic approach is a
series expansion introduced in the context of ”discrete time persistence”, yielding results for θ(d) which are in very
good agreement with numerical simulations [25].

B. Persistence in the limit of large dimension d

As we will see later, some statistical properties of the real roots of the polynomials Wn(x) (6) and Bn(x) (7) turn
out to be related to the statistics of zero crossings of the diffusion equation in the limit of large dimension d. To study
the persistence probability in that limit one performs a rescaling of the T variable in Eq. (13), T = 23/2T̃ /

√
d such

that

a(T − T ′) = a

(

23/2 T̃ − T̃ ′
√
d

)

∼ exp

[

−1

2
(T̃ − T̃ ′)2

]

, d≫ 1 . (14)

Therefore in the limit of large dimension d, one has θ(d) = 2−3/2θ∞
√
d where θ∞ is the decay constant associated

with the no zero crossing probability of the GSP with correlator exp [− 1
2 (T − T ′)2]. Even in that limit, there is no

exact result for θ∞. However, it can be approximately estimated using IIA [23], yielding θ∞,IIA = 0.411497... [6] in
very good agreement with numerical simulations θ∞,sim = 0.417(3) [7].
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III. RANDOM POLYNOMIALS

We now focus on statistical properties of the real roots of random polynomials, extending our previous study
presented in Ref. [14]. Being Gaussian processes, the statistical properties of these polynomials are determined by
the 2-point correlators Cn(x, y), given by

Cn(x, y) = 〈Kn(x)Kn(y)〉 = 1 +

n
∑

i=1

i
d−2
2 (xy)i for Kac polynomials , (15)

Cn(x, y) = 〈Wn(x)Wn(y)〉 =
n
∑

i=0

(xy)i

i!
for Weyl polynomials , (16)

Cn(x, y) = 〈Bn(x)Bn(y)〉 =

n
∑

i=0

(

n

i

)

(xy)i = (1 + xy)n for Binomial polynomials . (17)

For simplicity, we chose the same notation Cn(x, y) for the three classes of polynomials under study, and we will do
so for other quantities. In the following, these three polynomials will be treated separately so this should not induce
any confusion. For later purposes it is convenient to introduce the normalized correlator Ĉn(x, y) with

Ĉn(x, y) =
Cn(x, y)

√

Cn(x, x)Cn(y, y)
. (18)

Notice that Ĉn(x, y) = Ĉn(1/x, 1/y) for Kac polynomials Kn(x) with d = 2 and for Binomial polynomials Bn(x).

A. Density and mean number of real roots

Let us denote λ1, λ2, ..., λp the p real roots (if any) of one of these random polynomials in Eq. (3, 6, 7). The mean
density of real roots ρn(x) is given by

ρn(x) =

p
∑

i=1

〈δ(x − λi)〉 = 〈|K ′
n(x)|δ(Kn(x))〉 , for Kac polynomials , (19)

and similarly for Weyl polynomials Wn(x) and Binomial polynomials Bn(x). Under this form (19), one observes that
the computation of the mean density involves the joint distribution of the polynomial Kn(x) and its derivative K ′

n(x)
which is simply a bivariate Gaussian distribution. Thus computing ρn(x) involves a double integration of a bivariate
Gaussian distribution. This can be easily performed to obtain the following well known result

ρn(x) =

√

cn(x)(c′n(x)/x+ c′′n(x)) − [c′n(x)]2

2πcn(x)
, cn(x) = Cn(x, x) . (20)

This formula (20) can be written in a very compact way [12] :

ρn(x) =
1

π

√

∂u∂v logCn(u, v)

∣

∣

∣

∣

u=v=x

. (21)

For these different polynomials in Eq. (3, 6, 7), we will be interested in the number of real roots on a given interval
[a, b], which we will denote Nn[a, b]. Being a random variable, we will focus on its moments 〈Nk

n [a, b]〉, with k ∈ N.
In particular, one has from the definition of ρn(x) in Eq. (19)

〈Nn[a, b]〉 =

∫ b

a

ρn(x) dx , (22)

and higher cumulants will be considered below.
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1. Generalized Kac polynomials

One remarkable property of the generalized Kac polynomials Kn(x) is that, in the large n limit, the roots in the
complex plane tend to accumulate close to the unit circle centered at the origin. In the left panel of Fig. 1, we show
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FIG. 1: Left : Mean density of real roots ρn(x) for Kac polynomials Kn(x) (3) and d = 2 as a function of x for different values
of n = 10, 50 (dotted lines). The solid line is the analytic expression ρ∞(x) in Eq. (25) for |x| < 1 and in Eq. (27) for |x| > 1.
Right : Plot of n−1ρn(x) as a function of n(1 − x) for n = 500, 1000 (and thus x close to ±1). The dotted line is the function
ρK(y) in Eq. (31). There is no fitting parameter.

a plot of the density of real roots ρn(x) for d = 2 computed from Eq. (21) for different values of n = 10 and 50. In
the large n limit, one clearly sees that the real roots of such polynomials are concentrated around x = ±1, where the
density is diverging. This can be seen by computing ρn(±1) from Eq. (21)

ρn(±1) =
1

π

(

(1 + H(n, 1 − d/2))H(n,−d/2 − 1) −H(n,−d/2)2
)

1
2

1 + H(n, 1 − d/2)
∝ 2n

π(d+ 2)

√

d

d+ 4
, (23)

where H(n, r) =
∑n

k=1 k
−r is a generalized harmonic number [27]. To obtain the asymptotic behavior in the large n

limit of the above equation (23) we used H(n, r) ∝ n1−r/(1 − r), for large n and r < 1.
Away from these singularities, ρn(x) has a good limit when n→ ∞. However, one has to treat separately the cases

|x| < 1 and |x| > 1. For |x| < 1, the calculation is straightforward because Cn(x, y) in Eq. (15) has a good limit
n→ ∞ when x, y < 1. This yields

ρ∞(x) =

[

Li−1−d/2(x
2)(1 + Li1−d/2(x

2)) − Li2−d/2(x
2)
]

1
2

π|x|(1 + Li1−d/2(x2))
, |x| < 1 , (24)

where Lin(z) =
∑∞

i=1 z
i/in is the polylogarithm function [27]. In particular, one has ρ∞(0) = 1/π for all d, and

ρ∞(x) ∼ (d/2)
1
2 (2π((1 − x)))−1 for x→ 1−. For instance, one has for |x| < 1

ρ∞(x) =
1

π(1 − x2)
in d = 2 , ρ∞(x) =

1

π(1 − x2)

√

x8 + 2x6 − 4x4 + 2x2 + 1

x8 − 2x6 + 3x4 − 2x2 + 1
in d = 4 . (25)

For |x| > 1, the analysis is different because the correlator Cn(x, y) in Eq. (15) does not converge any more in the
limit n→ ∞ when x, y > 1. Instead, one has in that case (see also Ref. [16])

Cn(x, y) = 1 +

n
∑

i=1

i
d−2
2 (xy)i ∝ n

d−2
2 (xy)n+1

xy − 1
, x, y > 1 . (26)
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This leads to the expression for the density ρ∞(x) for |x| > 1 :

ρ∞(x) =
1

π(x2 − 1)
, (27)

independently of d. To understand better the divergence of ρn(x) around x = ±1 (23) when n≫ 1, we focus on ρn(x)
around x = 1. In the limit n≫ 1 and 1 − x≪ 1 keeping y = n(1 − x) fixed, one shows in Appendix A (see also [28])
that

ρn(x) = nρK(n(1 − x)) , ρK(y) =
1

π

√

Id/2+1(y)

Id/2−1(y)
−
(

Id/2(y)

Id/2−1(y)

)2

, (28)

Im(y) =

∫ 1

0

dx xm exp (−2yx) . (29)

One has ρK(0) = 2
π

1
d+2

√

d
d+4 , recovering the large n behavior in Eq. (23) and its asymptotic behaviors are given

by (see Appendix A)

ρK(y) ∼
{

1
2πy

√

d
2 , y → +∞

1
2π|y| , y → −∞ .

(30)

For instance, one has

ρK(y) =
1

2π

(

1

y2
− 1

sinh2 y

)1/2

, in d = 2 . (31)

In the right panel of Fig. 1, we show a plot of n−1ρn(x), where ρn(x) is given in Eq. (A1), as a function of n(1 − x)
for d = 2 and different large values of n = 500, 1000 together with the asymptotic results in Eq. (31) : we find a very
good agreement with these analytic predictions (28, 31).

Having computed the mean density of real roots, we now focus on 〈Nn([a, b])〉. On the interval [0, 1] the main
contribution to the mean number of real roots comes, for large n, from the vicinity of x = 1. Therefore, to compute
〈Nn[0, 1]〉 to leading order in n, one uses the scaling form for the density in Eq. (28), valid close to x = 1, and the
asymptotic behavior in Eq. (30) to obtain for n≫ 1

〈Nn[0, 1]〉 = 〈Nn[−1, 0]〉 =

∫ n

0

ρK(y)dy + O(1) =
1

2π

√

d

2
logn+ O(1) , (32)

where the corrections of order O(1) receive contributions from the whole interval [0, 1] (not only from the vicinity of
x = ±1).

Similarly, one gets from Eq. (28) and Eq. (30):

〈Nn[−∞,−1]〉 = 〈Nn[1,+∞]〉 =

∫ n

0

ρK(−y)dy + O(1) =
1

2π
logn+ O(1) , (33)

which is independent of d [16]. From Eqs (32, 33) we compute the total number of roots on the real axis :

〈Nn([−∞,+∞])〉 =
1

π

(

1 +

√

d

2

)

logn+ O(1) , (34)

thus recovering, in a way similar to the one used in Ref. [12] for d = 2, the result of [16]. Notice that for d = 2
the higher order terms of the large n expansion in this formula (34) have been obtained by various authors (see for
instance Ref. [12, 29]), although, to our knowledge, they have not been computed for d 6= 2.
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In view of future purposes, we also compute 〈Nn[0, x]〉 in the asymptotic limit where n ≫ 1, and 0 < 1 − x ≪ 1
with n(1 − x) kept fixed :

〈Nn[0, x]〉 = 〈Nn[0, 1]〉 − η−(n(1 − x)) , (35)

η−(y) =

∫ y

0

du ρK(u) , (36)

such that η−(0) = 0 and with the asymptotic behavior obtained from Eq. (30)

η−(y) ∼ 1

2π

√

d

2
log y , y → ∞ . (37)

Similarly, we compute 〈Nn[x,∞]〉 when x > 1 and obtain for n≫ 1 and 0 < x− 1 ≪ 1 keeping y = n(x− 1) fixed

〈Nn[x,∞]〉 = 〈Nn[1,∞]〉 − η+(n(x − 1)) , (38)

η+(y) =

∫ y

0

duρK(−u) , (39)

such that η+(0) = 0 and with the asymptotic behavior obtained from Eq. (30)

η+(y) ∼ 1

2π
log y , y → ∞ . (40)

We conclude this subsection by noting that, for d = 2, the statistics of real roots of Kn(x) is identical in the 4
sub-intervals [−∞,−1], [−1, 0], [0, 1] and [1,+∞]. Instead, for d 6= 2, the statistical behavior of real roots of Kn(x)
depend on d in the two inner intervals, while it is identical to the case d = 2 in the two outer ones. In addition, we
will see below that the polynomials Kn(x) (3) take independent values in these 4 subintervals.

2. Weyl polynomials

For Weyl polynomials Wn(x) in Eq. (6), the expression of the correlation function (16) together with the expression
for the density in Eq. (21) yields

ρn(x) =
1

π

√

1 +
x2n(x2 − n− 1)

ex2Γ(n+ 1, x2)
− x4n+2

[ex2Γ(n+ 1, x2)]2
, (41)

where Γ(n, x) =
∫∞

x
dte−ttn−1 is the incomplete gamma function [27]. In Fig. 2, we show a plot of ρn(x) (41) for

different values of n = 50, 100 and 500. One obtains straightforwardly, in the limit n→ ∞ the uniform density

ρ∞(x) =
1

π
. (42)

For n large but finite, the density is uniform like in Eq. (42) up to |x| ∼ √
n above which it vanishes (see Fig. 2).

Indeed, one shows in Appendix B that for n≫ 1, one has

ρn(x) ∼
{

π−1 , |x| ≪ √
n ,√

n
πx2 , |x| ≫ √

n .
(43)

One notices that this behavior of the density of real roots for Weyl polynomials (43) is similar to the density of real
eigenvalues for Ginibre random matrices [30], i.e. random n×n matices formed from i.i.d. Gaussian entries. Besides,
from this scaling form (43) one obtains the number of real roots in the interval [−x, x], x > 0, in the large n limit as

〈Nn[−x, x]〉 =

∫ x

−x

dtρn(t) ∼
{

2x/π , x <
√
n

2
√
n/π , x ≥ √

n ,
(44)

from which one gets the total number of real roots for n≫ 1 (see also Ref. [31])

〈Nn[−∞,+∞]〉 ∼ 2

π

√
n . (45)

To our knowledge, the higher order terms in this large n expansion are not known.
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FIG. 2: Mean density of real roots ρn(x) given in Eq. (41) for Weyl polynomials Wn(x) (6) as a function of x for different
values of n = 50, 100 and 500.

3. Binomial polynomials

For binomial polynomials, the computation of the density ρn(x) is straightforward. Indeed, using Eq. (17) together
with the formula for the density (21), one obtains

ρn(x) =
√
nρB(x) , ρB(x) =

1

π(1 + x2)
, (46)

exactly for all n > 1 [12, 20].

 0.1

 0.2

 0.3

-10 -5  0  5  10

n-1
/2

 ρ
n(

x)

x

FIG. 3: Scaled mean density of real roots n−1/2ρn(x) as a function of x (46) for binomial polynomials Bn(x) (7).

In Fig. 3, we show a plot of ρB(x) as a function of x. This formula (46) yields

〈Nn[a, b]〉 =

∫ b

a

ρn(t) dt =

√
n

π
(ArcTan b− ArcTan a) , (47)

from which one gets the very simple result (see for instance Ref. [12])

〈Nn[−∞,+∞]〉 =
√
n , exactly ∀n . (48)
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B. ”Gap probability” on the real axis

We now study another aspect of the statistical properties of the real roots of these polynomials and focus on the
probability P0([a, b], n) that they have no real root on a given interval [a, b]. The interval under study will depend on
the polynomials Kn(x), Wn(x) or Bn(x).

1. Results from the correlation function

These polynomials, as a function of x, are Gaussian processes and therefore their zero-crossing properties are
completely determined by the two-point correlators given in Eq. (15-17).

Generalized Kac polynomials: For these polynomials Kn(x), given the singularity of the mean density ρn(x)
around x = ±1 (see Fig. 1), it is natural to study separately P0([0, x], n), for x < 1, and P0([x,∞], n) for x > 1.
We first focus on P0([0, x], n) and reparametrize Kn(x) with a change of variable, x = 1 − 1/t. One finds that the
relevant scaling limit of Cn(t, t′) is obtained for t, t′, n→ ∞ keeping t̃ = t/n and t̃′ = t′/n fixed. In that scaling limit
the discrete sum in Eq. (15) can be viewed as a Riemann sum and one finds

Cn(x, y) ∝ nd/2Id/2−1

(

1

2t̃
+

1

2t̃′

)

, (49)

where Im(y) is defined in Eq. (29). Thus the normalized correlator Ĉn(t, t′) → C(t̃, t̃′) with the asymptotic behaviors
(see Eq. (A5))

C(t̃, t̃′) ∼







(

4 t̃t̃′

(t̃+t̃′)2

)

d
4
, t̃, t̃′ ≪ 1

1 , t̃, t̃′ ≫ 1 .
(50)

Thus this correlator is exactly the same as the one found for diffusion, C(t̃, t̃′) = a(t̃, t̃′) in Eq. (12). Since a Gaussian
process is completely characterized by its two-point correlator, we conclude that the diffusion process and the random
polynomial are essentially the same Gaussian process and hence have the same zero crossing properties. Therefore,
in complete analogy with Eq. (2) we propose the scaling form for generalized Kac polynomials

P0([0, x], n) = A−
d,nn

−θ(d)h−(n(1 − x)) , (51)

where A−
d,n, which is independent of x, is such that limn→∞ logA−

d,n/ logn = 0 and h−(y) → 1 for y ≪ 1 whereas

h−(y) ∼ yθ(d) for y ≫ 1, where θ(d) is the persistence exponent associated to the diffusion equation in dimension d.
Defined in this way (51), h−(u) is a universal function (see below), although the amplitude A−

d,n is not. Note that n

here plays the role of L2 in diffusion problem while the variable 1 − x is the analogue of the inverse time 1/t.
Similarly, we focus on P0([x,∞], n), x > 1, and reparametrize the polynomial with a change of variable, x = 1+1/t.

One finds that the relevant scaling limit of Cn(t, t′) is obtained for t, t′, n → ∞ keeping t̃ = t/n and t̃′ = t′/n fixed
and one obtains

Cn(x, y) ∝ nd/2Id/2−1

(

− 1

2t̃
− 1

2t̃′

)

, (52)

where Im(y) is defined in Eq. (29). Thus Ĉn(x, y) → C(t̃, t̃′) with the asymptotic behaviors (see Eq. (A5))

C(t̃, t̃′) ∼







(

4 t̃t̃′

(t̃+t̃′)2

)

1
2
, t̃, t̃′ ≪ 1

1 , t̃, t̃′ ≫ 1 ,
(53)

independently of d. Therefore, in complete analogy with Eq. (2) we propose the scaling form for random polynomials

P0([x,∞], n) = A+
d,nn

−θ(2)h+(n(x− 1)) , (54)
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where A+
d,n, which is independent of x is such that limn→∞ logA+

d,n/ logn = 0 and h+(y) → 1 for y ≪ 1 whereas

h−(y) ∼ yθ(2) for y ≫ 1.

Using the correlator Ĉn(x, y), one shows the statistical independence of the real roots of Kn(x) in the four sub-
intervals [−∞,−1], [−1, 0], [0, 1] and [1,+∞]. Consider for instance the intervals [0, 1] and [1,+∞]. Given that the
real roots in the interval [0,+∞] are concentrated, for n≫ 1, around x = 1 we introduce x = 1− 1/t and y = 1+1/t′

and consider the limit t, t′, n→ ∞. One easily obtains

Ĉn(1 − 1/t, 1 + 1/t′) ∝ e−n/Max(t,t′) , (55)

which decays to 0 exponentially for large n. Therefore one concludes that the zeros of Kn(x) in the sub-intervals
[0, 1] and [1,∞] are essentially independent. In a similar way, one shows that the real roots of Kn(x) on the four
subintervals delimited by ±1 are statistically independent. Finally combining Eqs (51, 54) together with (55) one
obtains the exact asymptotic result for the probability of no real root as

P0([−∞,∞], n) ∝ n−2(θ(d)+θ(2)) . (56)

We conclude this paragraph by presenting a heuristic argument which allows to connect the zero crossing properties
of the diffusion equation to the one of the real roots of Kn(x). For that purpose, we consider the solution of the
diffusion equation with random initial condition (11) and we focus on φ(0, t), without any loss of generality. Following
Ref. [24], one observes that the solid angle integration in that expression can be absorbed into a redefinition of the
random field, yielding

φ(0, t) =
S

1/2
d

(4πt)d/2

∫ L

0

dr r(d−1)/2e−r2/tΨ(r) , (57)

where Sd is the surface of the d-dimensional unit sphere and Ψ(r) is given by [24]

Ψ(r) = S
−1/2
d r−

1
2 (d−1) lim

∆r→0

1

∆r

∫

r<x<r+∆r

dx ψ(x) , (58)

which is thus a random Gaussian variable of zero mean and correlations 〈Ψ(r)Ψ(r′)〉 = δ(r − r′). Performing the
change of variable u = r2 in Eq. (57), one obtains

φ(0, t) ∝
∫ L2

0

du u
d−2
4 e−u/tΨ̃(u) , 〈Ψ̃(u)Ψ̃(u′)〉 = δ(u− u′) . (59)

On the other hand, if we focus on the real zeros of Kn(x) in the interval [0, x] with x < 1, we know that these zeros
accumulate in the vicinity of x = 1. Therefore, in terms of x = 1 − 1/t one has

Kn(x) ∼ a0 +

n
∑

i=1

i(d−2)/4e−i/tai . (60)

By approximating the discrete sum in the above expression (60) by an integral, one sees that Kn(x) is similar to the
solution of the diffusion equation in Eq. (59) where L2 is replaced by n and 1− x by 1/t. Therefore one understands
qualitatively why the zero crossing properties of these two processes coincide.

Weyl polynomials: To analyse the correlation function in Eq. (16) in the large n limit we write it as

Cn(x, y) = 〈Wn(x)Wn(y)〉 =

n
∑

i=0

(xy)i

i!
= exy Γ(n+ 1, xy)

Γ(n+ 1)
, (61)

where the last equality can easily be obtained using the recursion relation Γ(n+1, z) = nΓ(n, z)+e−zzn. The behavior
of Γ(n, z) for large n is analysed in detail in Appendix B. From the results obtained in Eq. (B3, B4), one sees that
the correlation function Cn(x, y) in Eq. (61) behaves differently for xy < n and xy > n.

For xy < n, Eq. (B3) shows that Γ(n+ 1, xy) → Γ(n+1) for large n so that one finds that Ĉn(x, y) → C(x, y) with

C(x, y) = exp [− 1
2 (x− y)2] . (62)
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Interestingly Eq. (62) shows that inside the interval [−√
n,

√
n], Wn(x) is exactly the GSP characterizing the zero

crossing properties of the diffusion field in the limit of infinite dimension d → ∞ (14). Therefore one expects
P0([−x, x], n), the probability that Wn(x) has no real root in the interval [−x, x], with 1 ≪ x ≤ √

n, to behave as

P0([−x, x], n) ∝ exp (−2θ∞x) . (63)

For xy > n, the behavior of Cn(x, y) is quite different. Indeed, using the asymptotic behavior in Eq. (B4), one
shows that the relevant scaling limit is obtained for x, y, n → ∞ keeping x̃ = x/

√
n and ỹ = y/

√
n fixed such that

Ĉn(x, y) → C(x̃, ỹ) with

C(x̃, ỹ) =

√
x̃2 − 1

√

ỹ2 − 1

x̃ỹ − 1
, x̃ỹ ≥ 1 , . (64)

Performing the change of variable x → x̃ =
√
n + 1/(

√
nt̃) one easily obtains that C(t̃, t̃′) behaves like in Eq. (53).

Therefore, by analogy with Eq. (54), one deduces that, for 0 < x − √
n ≪ 1, n ≫ 1 keeping

√
n(x −√

n) fixed, one
has

P0([x,∞], n) ∝ n− θ(2)
2 w(

√
n(x −

√
n)) , (65)

where w(u) ∼ cst for u ≪ 1 and w(u) ∝ uθ(2) for u ≫ 1. In addition, following the arguments presented above (see
Eq. (55)), one shows that these two outer-intervals [−∞,−√

n] and [
√
n,+∞] are statistically independent, such that

P0([−∞,−
√
n] ∪ [

√
n,+∞], n) ∝ n−θ(2) . (66)

However, given the behavior of the correlator C(x, y) for xy > n in Eq. (62) the inner and outer intervals are not
independent and the probability of no root on the real axis is not the product of the probabilities in Eq. (63) evaluated
in x =

√
n and the the one in Eq. (66) : the effect of these correlations will be discussed below.

Binomial polynomials: In that case, one can extract information directly from the correlation function in Eq. (17)

by focusing in the limit x, y → 0. In that limit the normalized correlation function Ĉn(x, y) is given by

Ĉn(x, y) =
(1 + x y)n

[(1 + x2)(1 + y2)]
n
2

∼ exp
[

−n
2 (x − y)2

]

, x, y ≪ 1 . (67)

Thus in the large n limit, the probability P0([a, b], n) that binomial polynomials have no real root in the interval [a, b]

with a < b≪ 1, n−1
2 ≪ b− a behaves like

P0([a, b], n) ∝ exp
[

−θ∞
√
n(b− a)

]

, a < b≪ 1 , n− 1
2 ≪ b− a , (68)

which is an exact statement. However it is a more difficult task to obtain the behavior of P0([a, b], n) for an arbitrary
interval [a, b] and eventually obtain the probability of no root on the entire real axis for this class of polynomials (7) :
this will be achieved in the next sections.

To conclude this paragraph, we have shown that the analysis of the correlation function Cn(x, y) yields important
exact results for the gap probabilities. Indeed, for generalized Kac polynomials, we obtained the important results in
Eq. (51) and Eq. (54) which yield the exact result in Eq. (56). For Weyl polynomials the study of the correlation
function allowed us to obtain the results in Eq. (63) and Eq. (65). Finally, for Binomial polynomials we obtained,
from the correlation funtion, the asymptotic behavior in Eq. (68), which will be useful in the following.

2. Mean-Field description : Poisson approximation

To calculate the gap probabilities and the associated scaling functions, we first develop a very simple mean field
theory. This theory, albeit approximate as it neglects the correlations between zeros, is simple, intuitive and qualita-
tively correct. We will see later how one can improve systematically this mean field theory to get answers that are
even quantitatively accurate. As a first step, we neglect the correlations between the real roots and simply consider
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that these roots are randomly and independently distributed on the real axis with some local density ρn(x) at point
x. Within this approximation the probability Pk([a, b], n) that these polynomials have exactly k real roots satisfies
the equation

∂Pk+1([a, b], n)

∂b
= ρn(b)[Pk([a, b], n) − Pk+1([a, b], n)] , (69)

together with the normalization condition
∑

k≥0 Pk([a, b], n) = 1 and Pk([a, b], n) = δk,0 when a = b. In the large

n limit (where one can omit the constraint Pk>n([a, b], n) = 0), Pk([a, b], n) is given by a non-homogeneous Poisson
distribution

Pk([a, b], n) =
µk

k!
e−µ , µ = 〈Nn[a, b]〉 =

∫ b

a

ρn(x)dx , (70)

which clearly satisfies Eq. (69). In particular, this mean field approximation (70) yields the gap probability

P0([a, b], n) = exp (−〈Nn[a, b]〉) = exp

(

−
∫ b

a

ρn(x) dx

)

. (71)

When applied to Generalized Kac polynomials Kn(x), for which we obtained 〈Nn[0, x]〉 in Eq. (35), this mean-field
approximation (71) yields in the scaling limit n→ ∞, 1 − x→ 0, n(1 − x) > 0 fixed

P0([0, x], n) = A−
d,nn

− 1
2π

r

d
2 exp [η−(n(1 − x))] , (72)

where, from Eq. (32), logA−
d,n = o(logn). This mean-field approximation thus yields the correct scaling from for

P0([0, x], n) as in Eq. (51), with the non trivial predictions for the exponent and scaling function

θMF(d) =
1

2π

√

d

2
, h−(u) = exp

(∫ u

0

dyρK(y)

)

, (73)

with the asymptotic behavior h−(u) ∼ 1 for u ≪ 1 and, using the asymptotic behavior obtained in Eq. (37),

h−(u) ∼ uθMF(d).
Similarly, this mean-field approximation applied to Weyl polynomials Wn(x), for which we obtained 〈Nn[−x, x]〉 in

Eq. (44), yields the scaling form

P0([−x, x], n) ∼
{

exp (−2x/π) , x <
√
n

exp (−2
√
n/π) , x ≥ √

n .
(74)

Notice that this mean-field approximation gives an approximation of θMF
∞ = π−1 = 0.31831... (see Eq. (63)), which is

consistent, using the relation θ(d) = 2−3/2θ∞
√
d for large d, with Eq. (73).

Finally, if one uses this mean-field approximation to study binomial polynomials Bn(x), one obains, using the
expression 〈Nn[a, b]〉 given in Eq. (47)

P0([a, b], n) = exp

[

−
√
n

π
(ArcTana− ArcTan b)

]

, (75)

which again, according to Eq. (68), gives the mean-field approximation for θMF
∞ = π−1, as above.

3. Beyond Mean-Field : a systematic approach

We will now show that this mean field approximation (71) can actually be improved systematically. For that
purpose, one considers the probability Pk([a, b], n) that such polynomials as in Eq. (3, 6, 7) have exactly k real roots
in the interval [a, b]. Following Ref. [21], one introduces the generating function

P̂n(p, [a, b]) =

∞
∑

k=0

pkPk([a, b], n) , (76)
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where P̂n(p, [a, b]) can be interpreted as a persistence probability with partial survival [21]. For a smooth process, it

turns out that θ̂n(p, [a, b]) = − log (P̂n(p, [a, b])) depends continuously on p : this was shown exactly for the random
acceleration process (see Eq. (106) below) and approximately using the IIA - and further checked numerically - for
the diffusion equation with random initial conditions [21]. Thus one has

θ̂n(p, [a, b]) = − log (P̂n(p, [a, b])) = −
∞
∑

r=1

(log (p))r

r!
〈N r

n([a, b])〉c , (77)

where the notation 〈...〉c stands for a connected average. Here we are interested in P̂n(p = 0, [a, b]) = P0([a, b], n) and

the idea, given that θ̂n(p = 1, [a, b]) = 0 is to expand θ̂n(p, [a, b]) around p = 1 in an ǫ-expansion with p = 1− ǫ. This
yields

θ̂n(1 − ǫ, [a, b]) =

∞
∑

r=1

ar,n([a, b])ǫr , (78)

where ar,n([a, b]) are linear combinations of the cumulants 〈Nm
n [a, b]〉c, with m ≤ r. For instance,

a1,n([a, b]) = 〈Nn[a, b]〉 , a2,n([a, b]) = 1
2

(

〈Nn[a, b]〉 − 〈N2
n[a, b]〉c

)

, (79)

a3,n([a, b]) =

( 〈Nn[a, b]〉
3

− 〈N2
n[a, b]〉c

2
+

〈N3
n[a, b]〉c

6

)

.

Thus one sees that if one restricts the ǫ-expansion in Eq. (78) to first order, and set ǫ = 1, one recovers the mean-
field approximation (71), using a1,n([a, b]) = 〈Nn[a, b]〉. Higher order terms in this ǫ-expansion allow to improve
systematically this mean-field approach.

Kac polynomials for d = 2: We first illustrate this ǫ expansion for Kac polynomials Kn(x) for d = 2 where we

compute θ̂n(1 − ǫ, [0, x]) up to order O(ǫ2). In that purpose, we compute a2,n([0, x]). In Appendix C, we show that
in the scaling limit (1− x) → 0, and n→ ∞ keeping the product n(1− x) fixed one has, similarly to the Eq. (35) for
the first moment,

〈N2
n[0, x]〉c = 〈N2

n[0, 1]〉c − ν−(n(1 − x)) (80)

where ν−(y), given in Eq. (C14), is such that ν−(y) → 0 for y ≪ 1 and

ν−(y) ∼
(

1

π
− 2

π2

)

log y , y ≫ 1 . (81)

Notice that 〈N2
n[0, 1]〉c in Eq. (80) has been computed in Ref. [32], yielding for large n

〈N2
n[0, 1]〉c =

(

1

π
− 2

π2

)

logn+ o(log n) , (82)

although higher order terms in this large n expansion are not known. Combining Eq. (78, 79, 80) together with the
expression for ν−(y) in Eq. (C14), one obtains in the scaling limit

θ̂n(1 − ǫ, [0, x]) =
(

ǫ+ ǫ2

2

)

〈Nn([0, 1])〉 − ǫ2

2 〈Nn([0, 1])2〉c (83)

−ǫ
∫ y

0

du ρK(u) + ǫ2
∫ y

0

du1

∫ ∞

u1

du2

(

K̃(u1, u2) − ρK(u1)ρ
K(u2)

)

+ O(ǫ3) ,

with y = n(1−x). In this Eq. (83), ρK(u) is given in Eq. (31), and K̃(u1, u2), which we study in detail in Appendix C,
is essentially the two-point correlation function of real roots inside the peak of the density around x = 1 (see right
panel of Fig. 1). Setting ǫ = 1 in this expression to order O(ǫ2) (83) one obtains, for d = 2

P0([0, x], n) = A−
d,nn

−θ(2)h−(n(x − 1)) , θ(2) =
π + 4

4π2
= 0.180899... , (84)

h−(y) = exp

(∫ y

0

du ρK(u) −
∫ y

0

du1

∫ ∞

u1

du2

(

K̃(u1, u2) − ρK(u1)ρ
K(u2)

)

)

, (85)



15

with logA−
d,n = o(logn) (see Eqs (32, 82)). Note that the value of the exponent θ(2) up to second order as given in

this Eq. (84) was computed in Ref. [21]. In the next sections, we will show, using numerics, that this second order
calculation (84) is a true improvement upon the mean-field approximation (73).

Weyl polynomials: We now compute θ̂n(1− ǫ, [−x, x]), x < √
n for Weyl polynomials up to order O(ǫ2). In that

purpose we compute a2,n([−x, x]). In Appendix D, one shows that for x <
√
n fixed and n≫ 1, one has

〈N2
n[−x, x]〉c = ν(x) , (86)

with ν(x) given in Eq. (D11). Combining Eq. (78, 79, 86) together with the expression for ν(x) in Eq. (D11), one
obtains for large n

θ̂n(1 − ǫ, [−x, x]) = ǫ
2x

π
+ 2ǫ2

∫ x

0

ds(s− x)(W̃(s) − π−2) + O(ǫ3) , (87)

where W̃(s), given in Eq. (D8), is the two point correlation function of real roots in the interval [−√
n,

√
n]. Setting

ǫ = 1 in this expression up to order O(ǫ2) (87), one obtains, for x <
√
n

P0([−x, x], n) = exp

(

−2x

π
−
∫ 2x

0

ds(s− 2x)(W̃(s) − π−2)

)

. (88)

Using Eq. (D13), one obtains its large x behavior as in Eq. (63) with the value of θ∞ up to order O(ǫ2)

θ∞ =
1

π
−
∫ ∞

0

ds(W̃(s) − π−2) = 0.386471... , (89)

which should be compared with the numerical value θ∞,sim = 0.417(3) [7].
If we focus instead on the outer intervals [−∞,−√

n] ∪ [
√
n,∞], this ǫ expansion is essentially similar to the one

performed for Kac polynomials and d = 2, given the behavior of the correlator in Eq. (64). More interestingly, if we
are interested in the computation of the probability of no root on the real axis, this ǫ expansion is able to take into
account (perturbatively) the correlations between the inner and outer intervals, which, as discussed below Eq. (66),
can be seen in the correlation function (62). Doing so, one obtains that

P0([−∞,∞], n) = P0([−
√
n,

√
n], n)P0([−∞,−

√
n] ∪ [

√
n,∞], n)pn , (90)

where the computation of pn is similar to the one carried out in Appendix D where the quantity Wn(t1, t2) in Eq. (D2)
involves t1 ∈ [−√

n,
√
n] and t2 ∈ [−∞,−√

n]∪ [
√
n,∞] such that t1t2 < 1. The computation up to order O(ǫ2) shows

that pn ∝ nτ with τ > 0. Therefore, on the basis of this result together with Eqs (63, 66), one expects

P0([−∞,∞], n) ∼ n−γ exp (−2θ∞
√
n) , (91)

where the exponent γ is a priori unknown. Below, we will confront this statement with numerical simulations.

Binomial polynomials: We now focus on θ̂n(1 − ǫ, n) for binomial polynomials. In Ref. [20], it was shown that

for large n and all a, b > n− 1
2

〈N2
n[a, b]〉c ∝ β2〈Nn[a, b]〉 , (92)

where β2 is a constant, independent of n, a and b. It has an analytic expression in term of an integral
involving elementary functions, with β2 = 0.571731.... This expression (92) yields in the large n limit,
a2,n([a, b]) = (1/2 − β2 ) 〈Nn[a, b]〉 which together with the asymptotic behavior in Eq. (68) and the cumu-
lant expansion of Eq. (78) allows to compute θ∞ up to order O(ǫ2). We have checked that this coincides with the
one obtained in Eq. (89). More generally, one expects that for all integer m > 0

〈Nm
n [a, b]〉c ∝ βm〈Nn[a, b]〉 , (93)

where βm is a constant, independent of n, a and b and in Appendix E we explicitly show the mechanism leading to
this relation (93) for k = 3. From these relations (93) and the structure of the cumulant expansion in Eq. (78), one
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expects that P0([a, b], n) ∝ exp [−ω〈Nn[a, b]〉], where ω is a linear combination of the coefficients βm. Finally, this

expression has to match the exact asymptotic behavior of P0([a, b], n) for a < b ≪ 1 and n− 1
2 ≪ b − a derived in

Eq. (68). Thus one has ω = πθ∞ so that one obtains the exact result

P0([a, b], n) ∝ exp
[

−
√
nθ∞(ArcTan b− ArcTana)

]

, (94)

from which we obtain the exact expression for the probability of no real root for Bn(x) in the large n limit as

P0([−∞,+∞], n) ∝ exp
(

−
√
nπθ∞

)

. (95)

Below, we check this analytical result (94) using numerical simulations.

4. Numerical results

Kac polynomials: We first focus on the interval [0, 1] and check numerically the scaling forms for P0([0, x], n)
in Eq. (2) for Kn(x) and for different values of d. In each case, this probability is obtained by averaging over
104 realizations of the random variables ai’s in Eq. (3), drawn independently from a Gaussian distribution of unit
variance. In Ref. [14], we already presented numerical results for P0([0, x], n) in d = 2 and we also checked that
P0([0, x], n) ∝ n−θ(2) with θ(2) = 0.187(1). In the left panel of Fig. 4, we show a plot of log[P0([0, x], n)/P0([0, 1], n)] for
d = 2 as a function of the scaled variable n(1−x) for different values of n. According to Eq. (2), together with the good
collapse of the curves for different values of n, this allows for a numerical computation of the scaling function h−(y).
We have checked that different distributions of the random coefficients either ai = ±1 or rectangular distribution yield
the same scaling function h−(y), suggesting that this function is indeed universal. On the same figure, the dotted line is
the result of Mean Field approximation (73), or first order in the ǫ expansion, and the solid line is the analytical result
of the second order calculation obtained in Eq. (84). In both cases, the integrals involved were evaluated numerically
using the Mathematica. As expected one observes on this plot that the Mean Field calculation is only in qualitative
agreement with the numerical results, we recall in particular that θMF(2) = 1/2π = 0.159155.... Interestingly, one
sees that the second order calculation is a clear improvement over the Mean Field calculation which is in quite good
agreement with the numerical results for the scaling function, in particular, θ(2) = (π+4)/4π2 = 0.180899.... We have
checked that this scaling (2) holds for other values of d. In the right panel of Fig. 4, we show a plot of nθ(3)P0([0, x], n)
for d = 3 and θ(3) = 0.238(4) as a function of n(1 − x) for different degrees n = 256, 512, 1024. Again, the value of
θ(3) = 0.238(4) for which one obtains the best collapse of the curves for different values of n is in good agreement
with the values of θ(3) found for the diffusion equation [6, 7].

We have also checked numerically our results for the gap probability in the outer intervals (54). For that purpose,
we notice that P0([x,∞], n) = P 0([0, 1/x], n), which is easier to compute numerically, where P 0([a, b], n) is the gap
probability associated to the polynomial Kn(x) defined such that Kn(x) = xnKn(1/x) with

Kn(x) =

n−1
∑

i=0

an−i(n− i)
d−2
4 xi + a0 x

n . (96)

Thus, from Eq. (54) one expects that for 0 < 1 − x≪ 1, and n≫ 1, keeping the product n(1 − x) fixed one has

P 0([0, x], n) ∝ n−θ(2)h+(n(1 − x)) , (97)

independently of d. In Fig. 5, we show a plot of nθ(2)P 0([0, x], n) as a function of n(1− x) for d = 3 and for different
values of n = 128, 256, 512, 1024. Again, the good collapse obtained for θ(2) = 0.1875 corroborates the validity of the
scaling in Eqs (54, 97).

Weyl polynomials: We first focus on the inner interval [−√
n,

√
n] and compute numerically the gap probability

P0([−x, x], n) for x <
√
n. Here also, this probability was computed by averaging over 104 different realizations of

the random coefficients ai’s. In the left panel of Fig. 6, we show a plot of [logP0([−x, x], n)]n−1/2 as a function of
x/

√
n < 1 for different values of n = 40, 90 and 150. According to our prediction in Eq. (63), P0([−x, x], n) behaves

exponentially for large x. From the slope of the straight line in the left panel of Fig. 6, one extracts 2θ∞ = 0.845(3),
in good agreement with previous numerical estimates from the persistence probability for the diffusion equation in
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for different values of n = 128, 256, 512, 1024.

large dimension [6, 7]. On the same figure, we have also plotted with a dotted line the result from the Mean Field
approximation (74) and with a solid line the result up to second order in the ǫ expansion in Eq. (87). Again, the
second order term allows to improve significantly the Mean Field prediction. We recall the estimate up to order O(ǫ2),
2θ∞ = 0.7729... from Eq. (89). We now focus on the outer intervals [−∞,−√

n] and [
√
n,+∞]. In the right panel

of Fig. 6, we plot nθ(2)P0([−x,−
√
n] ∪ [

√
n, x], n) as a function of x/

√
n > 1 for different degrees n = 20, 40 and

90. The fact that the curves for different n collapse on a single master curve is in agreement with the scaling
proposed in Eq. (66). Finally, we computed the gap probability on the full real axis. In the right panel Fig. 7,
we plot [log(nγP0([−x, x], n))]n−1/2 as a function of x/

√
n for different values of n = 40, 90 and 150. The exponent

γ = 0.10(1), which is the only fitting parameter is fixed to obtained the best collapse of the different curves in the large
x/

√
n limit. The solid line has a slope −2θ∞ = 0.845, which is also the value reached by log(nγP0([−x, x], n))n−1/2

for large x. This fact is in complete agreement with the scaling proposed in Eq. (91). The fact that γ < θ(2) arises
from the correlations between the inner and outer intervals.

Binomial polynomials: Finally, we have checked the exact result in Eq. (94) for binomial polynomials (7). For
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that purpose, we have computed numerically P0([−x, x], n) by averaging over 105 different realizations of the random
coefficients ai’s. In the right panel of Fig. 7, we show a plot of [logP0([−x, x], n)]n−1/2 as a function of x for different
values of n = 40 and 90. The solid line is the analytic prediction from Eq. (94) with θ∞ = 0.42(1), consistent with our
previous estimates from Weyl polynomials (see left panel of Fig. 7). The good agreement with the numerics confirms
also the exact result for the probability that these polynomials have no real root on the real axis in Eq. (95).

C. Probability of k real roots : large deviation function

We now generalize our analysis and study the probability Pk([a, b], n) that such polynomials (3, 6, 7) have exactly
k real roots [18] in a given interval [a, b].
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1. Mean field approximation : Poisson approximation

One first considers the Mean Field approximation introduced above where one assumes that the real roots are
totally independent and randomly distributed with density ρn(x). This leads to Eq. (70)

Pk([a, b], n) =
〈Nn[a, b]〉k

k!
e−〈Nn[a,b]〉 . (98)

If we focus on the limit n≫ k ≫ 1, keeping the ratio y = k/〈Nn[a, b]〉 fixed, one has

logPk([a, b], n) ∼ −〈Nn[a, b]〉 ϕMF

(

k

〈Nn[a, b]〉

)

, ϕMF(y) = 1 + y log y − y , (99)

where we have used the Stirling’s formula log (k!) = (k+ 1
2 ) log k−k+O(1). We will see below (through scaling analysis

as well as numerics) that this Mean Field approximation provides the correct scaling form for Pk([a, b], n) (although
the exact computation of ϕ(y) certainly demands a more sophisticated analysis). Let us present the consequences of
this scaling form in Eq. (99) for the different polynomials under study.

Kac polynomials: Let us define qk(n) = Pk([0, 1], n). In that case, we have seen in Eq. (32) that

〈Nn([0, 1])〉 ∼ 1
2π

√

d
2 logn so that one expects the scaling form

log qk(n) ∝ − lognϕ

(

2π

√

2

d

k

logn

)

. (100)

For the special case of Kac polynomials (d = 2), this scaling form, in the neighborhood of k = log n/2π, is consis-
tent with the rigorous result [32] that in this neighborhood qk(n) is a Gaussian with mean logn/2π and variance
Vn ∼ ( 1

π − 2
π2 ) logn (82) in the large n limit.

Weyl’s polynomials: Let us define qk(n) = Pk([−∞,∞], n). According to Eq. (45), which tells us that
〈Nn[−∞,∞]〉 ∼ (2/π)

√
n, and the scaling form in Eq. (99) one expects

log qk(n) ∝ −
√
nϕ

(

π

2

k√
n

)

. (101)

Binomial polynomials: Let us define similarly qk(n) = Pk([−∞,+∞], n). In that case, according to Eq. (48)
which tells us that 〈Nn[−∞,∞]〉 =

√
n, and the scaling form in Eq. (99) one expects

log qk(n) ∝ −
√
nϕ

(

k√
n

)

. (102)

In the following, we will check these scaling forms (100-102) numerically.

2. A more rigorous approach for a smooth Gaussian stationary process

We illustrate this approach on the diffusion equation with random initial conditions (1), which is the underlying
stochastic process describing the statistics of real roots of these random polynomials. We thus consider the probability
pk(t, L) that the diffusing field φ(x, t) crosses zero exactly k times up to time t. Let us first consider the regime
1 ≪ t ≪ L2. In this regime, pk(t, L) is given by the probability Pk(T ) that X(T ) crosses zero exactly k times
where X(T ) is a GSP with correlations a(|T − T ′|) = [cosh(|T − T ′|/2)]−d/2, where T = log t. Since, a(T ) =
1− d

16T
2 + o(T 2) for small T , this GSP is a smooth process with a finite density of zero crossings given by the Rice’s

formula µ = [−a′′(0)]1/2/π [26]. We propose the following scaling form for large T and large k, with k/T fixed

logPk(T ) = −Tϕ
(

k

µT

)

. (103)
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To understand the origin of this scaling form, let us consider the generating function P̂(p, T ) =
∑∞

k=0 p
kP(k, T ) as in

Eq. (76). One can show [21] that P̂(p, T ) ∼ exp[−θ̂(p)T ], where for a smooth GSP θ̂(p) depends continuously on p. If

the scaling in Eq. (103) holds, one gets by steepest descent method valid for large T , θ̂(p) = Minx>0[µx log p−ϕ(x)].
Inverting the Legendre transform we get

ϕ(x) = Max0≤p≤2[µx log p+ θ̂(p)] . (104)

Notice that although θ̂(p) is a priori defined on the interval [0, 1], the computation of ϕ(x) involves an analytical

continuation of θ̂(p) on [0, 2]. Going back to real time t, Eq. (103) then yields a rather unusual scaling form valid in
the limit 1 ≪ t≪ L2

log pk(t, L) ∼ − log t ϕ
(

k
µ log t

)

. (105)

In the opposite limit t≫ L2, one simply replaces t in (105) by L2. Translating into random polynomials, this regime
corresponds to (1 − x) ≪ n−1 since one just replaces t by 1/(1 − x) and L2 by the degree n as discussed before.
Hence, in this regime, we arrive at the announced scaling form for qk(n) in Eq. (100). This approach can be extended
straightforwardly to the other classes of polynomials, yielding the scaling forms in Eq. (101, 102).

Of course, despite the exact formula (104), the function ϕ(x) remains very hard to compute, simply because θ̂(p)
is, in many cases, unknown. However, for the random acceleration process (RAP), sometimes called in the literature
“integrated brownian motion”

d2 x(t)

d t2
= η(t) , 〈η(t)η(t′)〉 = δ(t− t′) , (106)

where η(t) is a white noise for which µRAP =
√

3/(2π), θ̂RAP(p) has been computed exactly [33, 34], yielding θ̂RAP(p) =
1
4 [1 − 6

π sin−1(p
2 )]. By performing the Legendre transform (104) one obtains

ϕRAP(x) =

√
3

2π
x log

(

2x√
x2 + 3

)

+
1

4

(

1 − 6

π
ArcSin

(

x√
x2 + 3

))

, (107)

with the asymptotic behaviors

ϕRAP(x) ∼











1
4 +

√
3

2π x log x , x→ 0
3
√

3
16π (x − 1)2 , x→ 1√

3
2π x log 2 , x→ ∞ ,

(108)

which gives back the exact result ϕRAP(0) = 1/4 [35, 36].

3. Numerical results

In Ref. [14], we have checked numerically the scaling form (105) for the diffusion equation with random initial
conditions. Here, we have computed numerically these probabilities qk(n) for the different polynomials under study.
This was done by averaging over 104 different realizations of the random coefficients ai’s. In the left panel of Fig. 8,
we show a plot of −[log qk(n)]/ logn as a function of 2πk/ logn for Kac polynomials (3) with d = 2 and for different
values of n = 20, 40, 80 and 100. This suggests that the different points fall on a single master curve, which is in
rather good agreement with the scaling form proposed in Eq. (100). Similarly, in the right panel of Fig. 8, we show
a plot of −[log qk(n)]n−1/2 as a function of k/

√
n for binomial polynomials (7) for different values of n = 31, 63, 127

and 255. Here also, the fact the points fall a single master curve is in good agreement with the scaling form in Eq.
(102). We have also checked that a similar scaling, as in Eq. (101) holds for Weyl polynomials (6).

D. Distribution of the maximum of real roots

Up to now, we have mainly focused on the distribution of the minimum λmin of the absolute values {|λi|} of the
real roots of these polynomials. Indeed, the gap probability P0([−x, x], n) is just the probability that λmin is larger
than x > 0. We now instead focus on the distribution of the maximum λmax of the {|λi|}.
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1. Mean Field approximation

As a first approach, we consider the Mean Field or Poissonian approximation introduced above, where one neglects
the correlations between the real roots. Then, for any random polynomial Qn(x) =

∑n
i=0 bix

i, the probability that
λmax ≤ x is simply the probability that Qn(x) has no real root in [−∞,−x] ∪ [x,+∞]. Therefore, within the Mean
Field approximation one has

Proba. (λmax ≤ x, n) = exp

(

−2

∫ ∞

x

ρn(t)dt

)

. (109)

Taking the derivative of this expression (109) with respect to x, one obtains the probability distribution function (pdf)
pmax(x, n) of the maximum λmax as

pmax(x, n) = 2ρn(x) exp

(

−2

∫ ∞

x

ρn(t)dt

)

. (110)

To obtain the large x behavior of pmax(x, n) one computes the one of ρn(x) whose expression is given by

ρn(x) =

√

cn(x)(c′n(x)/x + c′′n(x)) − [c′n(x)]2

2πcn(x)
, cn(x) =

n
∑

i=0

〈b2i 〉x2i . (111)

For large x, one has cn(x) = x2n〈b2n〉 + x2n−2〈b2n−1〉 + O(x2n−4) which gives ρn(x) ∼
√

〈b2n−1〉/〈b2n〉/(πx2). Finally,

from Eq. (110), one obtains for x≫ 1

pmax(x, n) ∼ 2ρn(x) ∼ 2

πx2

√

〈b2n−1〉
〈b2n〉

. (112)

2. Exact result for the tail

In fact, the tail of the distribution can be computed exactly by noting that

Proba.(λmax ≤ x, n) = P 0

([

− 1

x
,
1

x

]

, n

)

, (113)
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where P 0([a, b], n) is the gap probability associated to the polynomial Qn(x) defined such that Qn(x) = xnQn(1/x).
Similarly, we denote ρn(x) the mean density of real root associated to Qn(x). From this exact identity (113), valid
for all polynomials Qn(x) and all n ≥ 1, one obtains the asymptotic behavior

Proba.(λmax ≤ x, n) = 1 − 2
ρn(0)

x
+ o(x−1) , (114)

where we have simply used the definition of ρn(0), provided it is well defined, which is the case for Gaussian random
polynomials. From this asymptotic behavior (114), one obtains the pdf pmax(x, n) of the maximum λmax for large
x > 0 as

pmax(x, n) ∼ 2
ρn(0)

x2
, ρn(0) =

1

π

√

〈b2n−1〉
〈b2n〉

(115)

where we have used the formula (111) to compute ρn(0). For the various polynomials under consideration here, one

thus obtains such a power law tail (115) with ρn(0) = π−1((n−1)/n)
d−2
4 for Kac polynomials, ρn(0) =

√
n/π for Weyl

polynomials and binomial polynomials. This result shows in particular that the mean value of λmax is not defined for
these polynomials.

It is interesting to note that the Mean Field approximation (112) gives the exact result for this algebraic tail (115).
This might be understood by noting that, apart from a short range repulsion, the real roots of these polynomials are
actually weakly correlated. For instance, for Weyl polynomials, we show in Appendix D, see Eq. (D10), that the two-
point (connected) correlation function of the real roots inside the interval [−√

n,
√
n] decays faster than exponentially

at large distance (see also Ref. [20] for similar properties of Kn(x) and Bn(x)). On the other hand, the marginal
distribution of a single real root is nothing else but ρn(x)/〈Nn[−∞,∞]〉 which decays algebraically ρn(x) ∼ 1/x2 for
large x. Given that these real roots are weakly correlated, we expect that the distribution of the maximum of these
real roots is given by a Fréchet distribution, which indeed has a power law tail, as we found here (115).

3. Numerical results

We have checked numerically this exact asymptotic behavior (115) for the three classes of random polynomials (3,
6, 7). In all the three cases the pdf of the maximum λmax was obtained by averaging over 105 different realizations
of the random Gaussian variables ai’s. In the left panel of Fig. 9, we show a plot of pmax(x, n) as a function of x for
Kac polynomials and d = 2, for different values of n = 8, 16 and 32. Notice that the exact result in Eq. (115), which
is plotted here with a dotted line, is in principle true for all n ≥ 1 so that it is not necessary to perform numerics
for polynomials of large degree. This figure shows a good agreement between our analytic result and the numerics.
Similarly, in the right panel of Fig. 9, we have plotted pmax(x, n)/

√
n for Weyl polynomials Wn(x) and for different

values of n = 8, 16 and 32. Here again, the agreement with the analytical result in Eq. (115) is quite good.

IV. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have investigated different statistical properties of the real roots of three different types of real
random polynomials (3, 6, 7). In these three classes, the mean density of real roots exhibit a rich variety of behaviors,
as shown in Figs 1-3. We have first focused on gap probabilities (56, 91, 95) which were shown to be closely related
to the persistence probability for the diffusion equation with random initial conditions in dimension d (1, 2). We
proposed a Mean Field approximation to compute the exponents as well as the universal scaling functions describing
these gap probabilities. Furthermore, we showed how to improve systematically this MF approximation (see Fig. 4,
6) using an ǫ-expansion based on the so called persistence with partial survival. In the case of binomial polynomials
Bn(x) (7), this allows to obtain exact results for the gap probability (94). Our main results for the gap probability
q0(n) on the full real axis are summarized in Fig. 10. We hope that these connections may help to obtain exact results
for the exponent θ(d), which remains a challenge. Besides, we extended our analysis to the probability that these
random polynomials have exactly k real roots in a given interval [a, b]. We have shown, in the three cases, that this
probability has an interesting scaling form characterized by a large deviation function (100-102). We proposed a Mean
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FIG. 9: Left : pmax(x, n) for Kac polynomials Kn(x) (3) and d = 2 as a function of x for different values of n = 8, 16 and 32.
The dotted line is the exact result for the tail of the distribution (115). Right : pmax(x, n)/

√
n for Weyl polynomials Wn(x)

(6) as a function of x for different values of n = 8, 16 and 32. The dotted line is the exact result for the tail of the distribution
(115)

Kn(x)

Wn(x)

Bn(x)

n−2(θ(d)+θ(2))

exp (−2θ∞
√

n)

exp (−πθ∞
√

n)

ǫ expansionup to O(ǫ2)

θ∞ = 1/π
θ∞ = 0.42(1)

θ(2) = 0.187(1)

Mean Field Numeris
θ(2) = 0.1808...

θ(2) = 0.1595...

θ(d) = 1
2π
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d
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θ∞ = 0.3864...

q0(n)

FIG. 10: Summary of the main results for the probability of no root on the full real axis q0(n) for the three different classes of
polynomials Kn(x),Wn(x) and Bn(x).

Field approximation which reproduces qualitatively these scaling forms, which were further checked numerically (see
Fig. 8). A similar question was asked in the past for Ginibre real matrices : what is the probability that such n× n
matrices has exactly k real roots ? Quite recently, in Ref. [37], Akemann and Kanzieper obtained an exact formula
for this probability. In that case, the mean number of real roots grows like

√
n and our MF approximation would

therefore suggest a scaling form for this probability similar to Eq. (101). It would be very interesting to extract the
large deviation function from an asymptotic analysis of the exact result of Ref. [37].

Finally, we computed the pdf of the largest real root of these random polynomials. We showed that for a wide class
of random polynomials, this pdf has an algebraic tail with exponent −2 as shown in Eq. (115) and it would certainly
be interesting to extend these results to the case of non-Gaussian random polynomials.
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APPENDIX A: CALCULATION OF THE MEAN DENSITY FOR GENERALIZED KAC’S

POLYNOMIALS

In this appendix, we give some details concerning the computation of the mean density and the mean number of
real roots for Kac’s polynomials Kn(x) (3).

1. Scaling form

The starting point of the calculation is the formula for the density ρn(x) given in Eq. (21), which using Eq. (15)
gives

ρn(x) =
1

π

√

sd/2+1,n(x)

1 + x2sd/2−1,n(x)
−
(

sd/2,n(x)

1 + sd/2−1(x)

)2

, (A1)

with sk,n(x) =

n
∑

i=1

ikx2i−2 .

In the limit n≫ 1, and |1 − x| ≪ 1 keeping y = n(1 − x) fixed, sk,n(x) can be viewed as a Riemann sum, thus

sk,n(x) ∼ nk+1

∫ 1

0

dxxke−2ux , u = n(1 − x) . (A2)

Finally using Eq. (A2) together with Eq. (A1) yield the formula (28) given in the text :

ρn(x) = nρK(n(1 − x)) , ρK(y) =
1

π

√

Id/2+1(y)

Id/2−1(y)
−
(

Id/2(y)

Id/2−1(y)

)2

, (A3)

Im(y) =

∫ 1

0

dx xm exp (−2yx) . (A4)

2. Asymptotic expansions

To compute the asymptotic behaviors of the function ρK(y) in Eq. (28), one needs the asymptotic behaviors of
Im(y) defined above (A4).

a. The limit y → ∞

In that limit, one writes Im(y) as

Im(y) = y−1−m

∫ y

0

duume−2u = y−1−m

∫ ∞

0

duume−2u + O(yme−2y)

= (2y)−1−mΓ(1 +m) + O(yme−2y) , (A5)

which, together with Eq. (28), gives the first line of the formula given in Eq. (30) in the text.
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b. The limit y → −∞

Because of several cancellations occurring in ρK(y) in the limit y → −∞ one needs the three first terms in the
asymptotic behavior of Im(y) in that limit :

Im(y) = |u|−1−m

∫ |y|

0

du ume2u

= e2|y|
(

1

2|y| −
m

4y2
+
m(m− 1)

8|y|3 + O(y−4)

)

, (A6)

which after a tedious but straightforward calculations, using Eq. (28), gives the second line of the formula given in
Eq. (30) in the text.

APPENDIX B: CALCULATION OF THE MEAN DENSITY FOR REAL WEYL’S POLYNOMIALS

In this section, we present the details of the calculation leading to the scaling form given in Eq. (43). We start
with the expression for the mean density given in Eq. (41) with x = u

√
n:

ρn(x) = ρn(
√
nu) =

1

π

√

1 +
nn+1u2n(u2 − 1 − n−1)

enu2Γ(n+ 1, nu2)
− n2n+1u4n+2

(enu2Γ(n+ 1, nu2))2
. (B1)

We want to obtain the limit n → ∞, keeping u fixed, in the above equation (B1) . For that purpose, we need the
large n behavior of Γ(n, nu2) for large n and u fixed. One writes

Γ(n, nu2) = nn

∫ ∞

u2

dx

x
e−n(x−log x) = nn

∫ ∞

log u2

dy e−nf(y) , f(y) = y − log y , (B2)

and under this form (B2) we can now perform a saddle-point calculation. The function f(y) has a single minimum
at y = 1 and therefore we expect that the large n behavior of the expression in Eq. (B2) will depend on the sign of
u− 1. For u < 1 the minimum of f(y) lies in the interval of integration in Eq. (B2) and one gets a result independent
of u

Γ(n+ 1, nu2) =
√

2πnn+1/2e−n
(

1 + O(n−1/2)
)

, u < 1 . (B3)

On the other hand, for u > 1 the minimum of f(y) in Eq. (B2) lies outside the interval of integration and one gets
instead

Γ(n+ 1, nu2) = nn−1e−nu2 u2n

u2 − 1

(

1 − 1

n

u2

(u2 − 1)2
+ O(n−2)

)

, u > 1 . (B4)

Using the asymptotic expansion for u < 1 (B3) together with Eq. (B1) one obtains straightforwardly that for u < 1
fixed and large n

ρn(
√
nu) =

1

π
+ O(n−1/2) , u < 1 , (B5)

yielding, in the limit n→ ∞ the expression (43) given in the text. Similarly, using Eq. (B4) together with Eq. (B1),
one gets for u > 1 fixed and large n

ρn(
√
nu) = O(n−1) , u > 1 , (B6)

yielding, in the limit n→ ∞ the expression (43) given in the text.
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APPENDIX C: COMPUTATION OF 〈N2
n([0, x])〉c FOR KAC’S POLYNOMIALS AND d = 2

1. Scaling form

In this appendix, we give the details of the computation of 〈N2
n([0, x])〉 which lead to formula (80) given in the text.

We start from the general formula valid for all n [38] (see also [20])

〈N2
n([0, x])〉 =

∫ x

0

dtρn(t) +

∫ x

0

dt1

∫ x

0

dt2Kn,2(t1, t2) , (C1)

where Kn,2(t1, t2) is the 2-point correlation function of real roots of Kn(x), given by

Kn,2(t1, t2) =
1

4π2
√

det∆n(t1, t2)

∫ ∞

−∞

∫ ∞

−∞
|y1y2|e−

1
2 (Y Ωn(t1,t2),Y )dy1dy2 , (C2)

where Y = (y1, y2), ∆n(t1, t2) is the 4 × 4 covariance matrix of (Kn(t1),K
′
n(t1),Kn(t2),K

′
n(t2)) and Ωn(t1, t2) is

the 2 × 2 matrix obtained by removing the first and the third rows and columns from ∆n(t1, t2)
−1. In the limit

0 < 1 − t1 ≪ 1, 0 < 1 − t2 ≪ 1 and n→ ∞, keeping u1 = n(1 − t1), u2 = n(1 − t2) fixed one has

〈Kn(t1)Kn(t2)〉 = ng(u1 + u2) , g(x) =
1 − e−x

x
,

〈Kn(t1)K
′
n(t2)〉 = 〈K ′

n(t1)Kn(t2)〉 = −n2g′(u1 + u2) ,

〈K ′
n(t1)K

′
n(t2)〉 = n3g′′(u1 + u2) . (C3)

Using these relations (C3), one obtains the matrix ∆n(t1, t2) in this scaling limit as

∆n(t1, t2) =







n g(2u1) −n2 g′(2u1) n g(u1 + u2) −n2 g′(u1 + u2)
−n2 g′(2u1) n3 g′′(2u1) −n2 g′(u1 + u2) n3 g′′(u1 + u2)
n g(u1 + u2 −n2 g′(u1 + u2) n g(2u2) −n2 g′(2u2)

−n2 g′(u1 + u2) n3 g′′(u1 + u2) −n2 g′(2u2) n3 g′′(2u2)






, (C4)

from which one gets

det∆n(t1, t2) = n8 det ∆̃(u1, u2) , (C5)

∆̃(u1, u2) =







g(2u1) −g′(2u1) g(u1 + u2) −g′(u1 + u2)
−g′(2u1) g′′(2u1) −g′(u1 + u2) g′′(u1 + u2)
g(u1 + u2 −g′(u1 + u2) g(2u2) −g′(2u2)

−g′(u1 + u2) g′′(u1 + u2) −g′(2u2) g′′(2u2)






. (C6)

From the structure of ∆n(t1, t2) in the scaling limit (C4), one obtains the one of Ωn(t1, t2) in Eq. (C2) as

Ωn(t1, t2) = n−3Ω̃(u1, u2) , (C7)

Ω̃(u1, u2) =

(

A(u1, u2) B(u1, u2)
B(u1, u2) C(u1, u2)

)

, (C8)

where Ω̃(u1, u2), is obtained by removing the first and the third rows and columns from ∆̃(u1, u2)
−1. The functions

A(u1, u2), B(u1, u2), C(u1, u2) have complicated expressions not given here which can be easily computed e.g. using
Mathematica. Using the scaling forms (C5, C7) one obtains Kn,2(t1, t2) in Eq. (C2) in the scaling limit as

Kn,2(t1, t2) = n2K̃(u1, u2) (C9)

K̃ =
(det ∆̃)−1/2

π2AC(1 − (δ)2)

(

1 +
δ

√

1 − (δ)2
ArcSin δ

)

, δ =
B√
AC

. (C10)
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where we used the notation ∆̃ ≡ ∆̃(u1, u2) and the expression [20] (see also Ref. [38])

∫ ∞

−∞

∫ ∞

−∞
|y1y2|e−

1
2 (Ay2

1
+2By1y2+Cy2

2
)dy1dy2 =

4

AC(1 − (δ)2)

(

1 +
δ

√

1 − (δ)2
ArcSin δ

)

(C11)

Using this scaling form (C9), together with the one for the density in Eq. (28), one obtains 〈Nn([0, x])2〉c in the limit
0 < (1 − x) ≪ 1, with n→ ∞ keeping y = n(1 − x) fixed as

〈Nn([0, x])2〉c ∼
∫ n

y

ρK(u)du+

∫ n

y

du1

∫ n

y

du2 (K̃(u1, u2) − ρK(u1)ρ
K(u2)) . (C12)

Alternatively, one can write Eq. (C12) in the large n limit as

〈Nn([0, x])2〉 − 〈Nn([0, 1])2〉 = −ν−(n(1 − x)) (C13)

ν−(y) =

∫ y

0

duρK(u) + 2

∫ y

0

du1

∫ ∞

u1

du2 (K̃(u1, u2) − ρK(u1)ρ
K(u2)) . (C14)

2. Large argument behavior of ν−(y)

To compute ν−(y) in the large y limit, one compute dν−(y)/dy from Eq. (C14)

dν−(y)

dy
= ρK(y) + 2

∫ ∞

y

du2(K̃(y, u2) − ρK(y)ρK(u2)) . (C15)

The large y behavior of ρK(y) has been computed previously (30). To extract the large y behavior of dν−(y)/dy, one

thus needs to compute the behavior of K̃(u1, u2) for u1, u2 ≫ 1. We first analyse the behavior ∆̃(u1, u2) in Eq. (C6)
for u1, u2 ≫ 1. This yields

∆̃(u1, u2) ∼











1
2u1

1
4u2

1

1
u1+u2

1
(u1+u2)2

1
4u2

1

1
4u3

1

1
(u1+u2)2

2
(u1+u2)3

1
u1+u2

1
(u1+u2)2

1
2u2

1
4u2

2

1
(u1+u2)2

2
(u1+u2)3

1
4u2

2

1
4u3

2











, (C16)

from which one gets

det ∆̃(u1, u2) ∼
1

256(u1u2)4

(

u1 − u2

u1 + u2

)8

. (C17)

From Eq. (C16), one gets the behavior of the matrix Ω̃ in Eq. (C8) as

A(u1, u2) ∼ 8u3
1

(

u1 + u2

u1 − u2

)4

(C18)

B(u1, u2) ∼ 16
u2

1u
2
2

u1 + u2

(

u1 + u2

u1 − u2

)4

(C19)

C(u1, u2) ∼ 8u3
2

(

u1 + u2

u1 − u2

)4

(C20)

which gives δ = B/
√
AC as

δ(u1, u2) ∼
2
√
u1u2

u1 + u2
(C21)



28

Finally, using Eq. (C18-C21) together with Eq. (30) in d = 2 one gets

K̃(u1, u2) − ρK(u1)ρ
K(u2) ∼ − 1

π2(u1 + u2)2
+

1

2π2
√
u1u2

|u1 − u2|
(u1 + u2)2

ArcSin
2
√
u1u2

u1 + u2
. (C22)

Therefore, from Eq. (C15), one gets

dν−(y)

dy
∼ 1

y

(

2

π2
− 1

π

)

+ O(y−2) , (C23)

where we have used the identity
∫ ∞

1

dv√
v

v − 1

(v + 1)2
ArcSin

(

2
√
v

v + 1

)

=
π

2
− 1 . (C24)

Finally, one gets from Eq. (C23) that

ν−(y) ∼
(

2

π2
− 1

π

)

log y + O(1) . (C25)

APPENDIX D: COMPUTATION OF 〈N2
n([−x, x])〉c FOR WEYL POLYNOMIALS

1. Scaling form

In this appendix we give the detail of the computation of 〈Nn([−x, x])2〉 which leads to formula (86) in the text.
Here again we start from the general formula valid for all n, similarly to Eq. (C1)

〈N2
n([−x, x])〉 =

∫ x

−x

dtρn(t) +

∫ x

−x

dt1

∫ x

−x

dt2Wn,2(t1, t2) , (D1)

where Wn,2(t1, t2) is the 2-point correlation function of the real roots of Wn(x), given by formula (C2) where Kn(x)
is replaced by Wn(x):

Wn,2(t1, t2) =
1

4π2
√

det∆n(t1, t2)

∫ ∞

−∞

∫ ∞

−∞
|y1y2|e−

1
2 (Y Ωn(t1,t2),Y )dy1dy2 , (D2)

where Y = (y1, y2), ∆n(t1, t2) is the 4× 4 covariance matrix of (Wn(t1),W
′
n(t1),Wn(t2),W

′
n(t2)) and Ωn(t1, t2) is the

2 × 2 matrix obtained by removing the first and the third rows and columns from ∆n(t1, t2)
−1. In the limit n → ∞,

keeping t1 <
√
n, t2 <

√
n fixed one has

〈Wn(t1)Wn(t2)〉 = et1t2 ,

〈W ′
n(t1)Wn(t2)〉 = t2e

t1t2 ,

〈Wn(t1)W
′
n(t2)〉 = t1e

t1t2 ,

〈W ′
n(t1)W

′
n(t2)〉 = (1 + t1t2)e

t1t2 , (D3)

from which we obtain ∆n(t1, t2) = ∆̃(t1, t2) as

∆̃(t1, t2) =











et2
1 t1e

t2
1 et1t2 t1e

t1t2

t1e
t2
1 (1 + t21)e

t2
1 t2e

t1t2 (1 + t1t2)e
t1t2)

et1t2 t2e
t1t2 et2

2 t2e
t2
2

t1e
t1t2 (1 + t1t2)e

t1t2 t2e
t2
2 (1 + t22)e

t2
2











. (D4)

The determinant is easily obtained as

det ∆̃(t1, t2) = e(t1+t2)2
(

4 sinh2

(

(t1 − t2)
2

2

)

− (t1 − t2)
4

)

(D5)
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From ∆̃(t1, t2) in Eq. (D4), one obtains Ωn(tt, t2) = Ω̃(t1, t2) for large n as

Ω̃(t1, t2) =

(

D(t1, t2 E(t1, t2))
E(t2, t2) F (t1, t2)

)

(D6)

with

D(t1, t2) =
et2

1
+2t2

2

∆̃(t1, t2)
(1 − e−(t1−t2)2(1 + (t1 − t2)

2)) ,

E(t1, t2) =
e3t1t2

∆̃(t1, t2)
(1 − e(t1−t2)2(1 − (t1 − t2)

2)) ,

F (t1, t2) =
e2t2

1
+t2

2

∆̃(t1, t2)
(1 − e−(t1−t2)

2

(1 + (t1 − t2)
2)) . (D7)

Finally, using these expressions (D7) together with the formula in Eq. (C11), one obtains from Eq. (D2) that

Wn,2(t1, t2) = W̃(t1 − t2) with

W̃(s) =
1

π2

((1 − e−s2

)2 − s4e−s2

)
1
2

1 − e−s2

(

1 +
δ(s)

√

1 − (δ(s))2
ArcSin δ(s)

)

, (D8)

with

δ(s) =
e−s2/2(e−s2

+ s2 − 1)

1 − e−s2 − s2e−s2
. (D9)

Notice that W̃(s) is the two point correlation function of real zeros of Wn(x). Interestingly, this correlation function in
Eq. (D8) coincides (up to a multiplicative prefactor π−2) with the correlation of straightened zeros of Bn(x) obtained
in [20]. Its asymptotic behaviors are given by

W̃(s) ∼
{ |s|

4π , s→ 0
1

π2 + s4e−s
2

2π2 , s→ ∞
(D10)

Finally, using the expression (D1) together with Eq. (D2) one has for 0 < x <
√
n, in the limit n→ ∞

〈N2
n([−x, x])〉c = ν(x) ,

ν(x) =
2x

π
+ 2

∫ 2x

0

ds(2x− s)(W̃(s) − π−2) . (D11)

2. Large argument behavior of ν(x)

To analyse the large x behavior of ν(x), one computes dν(x)/dx and gets immediately

lim
x→∞

dν(x)

dx
=

2

π
+ 4

∫ ∞

0

ds(W̃(s) − π−2) (D12)

such that

ν(x) ∝ 2ν∞x , x≫ 1 (D13)

with ν∞ = 0.181988..., which leads to the value of θ∞ up to order O(ǫ2) given in Eq. (89).
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APPENDIX E: COMPUTATION OF 〈N3
n([a, b])〉c FOR BINOMIAL POLYNOMIALS

In this appendix, we give the detailed calculation of 〈N3
n([a, b])〉c which leads to the formula (93) given in the text,

for m = 3. We start with the general formula (see for instance Ref. [20]):

〈N3
n([a, b])〉c = 〈Nn[a, b]〉 + 3〈N2

n[a, b]〉c (E1)

+

∫ b

a

dt1

∫ b

a

dt2

∫ b

a

dt3 (Bn,3(t1, t2, t3) − 3Bn,2(t1, t2)ρn(t3) + ρn(t1)ρn(t2)ρn(t3)) , (E2)

where Bn,m is the m-point correlation function of real roots of Bn(x). In Eq. (E1), Bn,2(t1, t2) is given by the formula
(C2) where Kn(x) is replaced by Bn(x) and Bn,3(t1, t2, t3) is formally given by (see for instance Ref. [20])

Bn,3(t1, t2, t3) =

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

∫ ∞

−∞
dy3|y1y2y3|Dn,3(0, y1, 0, y2, 0, y3; t1, t2, t3) , (E3)

where Dn,3(x1, y1, x2, y2, x3, y3) is the joint distribution density of (Bn(t1), B
′
n(t1), (Bn(t2), B

′
n(t2), (Bn(t3), B

′
n(t3)).

According to Eq. (92), the two terms in (E1) have the desired form (93) for large n. To study the triple integral in
Eq. (E2) in the large n limit, we will use the results obtained in Ref. [20] :

lim
n→∞

[ Bn,2(t1, t2)

ρn(t1)ρn(t2)

]

ti=〈N [0,si]〉−1

= b2(s1, s2) ≡ b2(s1 − s2) , (E4)

where 〈N [0, si]〉−1 is the inverse function of 〈N [0, si]〉. Similarly

lim
n→∞

[ Bn,3(t1, t2, t3)

ρn(t1)ρn(t2)ρn(t3)

]

ti=〈N [0,si]〉−1

= b3(s1, s2, s3) ≡ b3(s1 − s2, s2 − s3) , (E5)

where b2(u) and b3(u, v) are well defined functions, with a quite complicated expression not given here (see Ref. [20]
for more detail). Given these results (E4, E5), it is natural to perform the change of variable si = 〈Nn[0, ti]〉 in Eq.
(E2), which yields

∫ x

0

dt1

∫ x

0

dt2

∫ x

0

dt3 (Bn,3(t1, t2, t3) − 3Bn,2(t1, t2)ρn(t3) + ρn(t1)ρn(t2)ρn(t3)) (E6)

=

∫ 〈Nn[0,b]〉

〈Nn[0,a]〉
ds1

∫ 〈Nn[0,b]〉

〈Nn[0,a]〉
ds2

∫ 〈Nn[0,b]〉

〈Nn[0,a]〉
ds3 (b3(s1 − s2, s2 − s3) − 3b2(s1 − s2) + 2) . (E7)

Performing the change of variables si → si − 〈Nn[0, a]〉, one has

∫ x

0

dt1

∫ x

0

dt2

∫ x

0

dt3 (Bn,3(t1, t2, t3) − 3Bn,2(t1, t2)ρn(t3) + ρn(t1)ρn(t2)ρn(t3)) (E8)

=

∫ 〈Nn[a,b]〉

0

ds1

∫ 〈Nn[a,b]〉

0

ds2

∫ 〈Nn[a,b]〉

0

ds3 (b3(s1 − s2, s2 − s3) − 3b2(s1 − s2) + 2) . (E9)

Given that 〈Nn[a, b]〉 ∝ √
n in the large n limit for a, b > n−1/2, one gets the multiple integral in Eq. (E8) in the

large n limit as

∫ 〈Nn[a,b]〉

0

ds1

∫ 〈Nn[a,b]〉

0

ds2

∫ 〈Nn[a,b]〉

0

ds3 (b3(s1 − s2, s2 − s3) − 3b2(s1 − s2) + 2)

∼ σ〈Nn[a, b]〉 , (E10)

with σ = 3
∫ 0

−∞ du
∫ 0

−∞ dv (b3(u, v) − 3b2(v) + 2), provided this double integral over u, v is well defined (which we can

only assume here given the complicated expression of b3(u, v)).
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Finally, combining Eq. (E1, E2, 92) together with Eq. (E10) one obtains that

〈N3
n[a, b]〉c ∝ β3〈Nn[a, b]〉 , (E11)

with a3 = 1 + 3a2 + σ. Notice that the crucial point in the derivation of this relation is the fact that 〈Nn[a, b]〉 ∝ √
n

for any fixed a, b > n−1/2. One expects a similar mechanism to hold for higher values of m, yielding Eq. (93) in the
text.

〈Nm
n [a, b]〉c ∝ βm〈Nn[a, b]〉 . (E12)
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