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ABSTRACT. We study the distribution of the zeros near the central point for following
families of primitive Dirichlet characters:

(1) all primitive characters of conductorm, m a fixed prime;
(2) all primitive characters of conductorm, m an odd square-free number withr

factors (r fixed);
(3) all primitive characters whose conductor is a square-free odd integerm ∈ [N, 2N ].

For these families the1-level densities agree with the Unitary Group for even Schwartz
functionsφ̂ with supp(φ̂) ⊂ (−2, 2). We investigate the consequences of conjectures
about the modulus dependence in the error terms in the distribution of primes in con-
gruence classes. We show how some natural conjectures imply the1-level densities
agree with Unitary matrices for arbitrary support. Further, we show how some weaker
conjectures still give an improvement over(−2, 2), allowing support up to(−4, 4).
These are very rough notes.

1. INTRODUCTION

Assuming GRH, the non-trivial zeros of any niceL-function lie on its critical line,
and therefore it is possible to investigate the statistics of its normalized zeros. Let
F be a family ofL-functions, andFN the subset with analytic conductorsN (or at
most N ). For example, we can studyL-functions arising from Dirichlet characters
[Ru, HR], families of elliptic curves [Mil, Yo], weightk level N cuspidal newforms
[ILS, Ro, HM], L-functions attached to quadratic fields [FI] and symmetric powers of
GL2 automorphic representations [Gü] to name a few. Katz and Sarnak [KS1, KS2]
have conjectured that the behavior of zeros near the central points = 1

2
in a family of

L-functions (as the conductors tend to infinity) agrees with the behavior of eigenvalues
near1 of a classical compact group (unitary, symplectic, or some flavor of orthogonal).

Let φ be an even Schwartz test function onR whose Fourier transform

φ̂(y) =

∫ ∞

−∞
φ(x)e−2πixydx (1.1)

has compact support. LetFN be a (finite) family ofL-functions satisfying GRH. The
1-level density associated toFN is defined by

D1,FN
(φ) =

1

|FN |
∑

f∈FN

∑
j

φ

(
log cf

2π
γ

(j)
f

)
, (1.2)
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where 1
2

+ iγ
(j)
f runs through the non-trivial zeros ofL(s, f). Herecf is the “analytic

conductor” off , and gives the natural scale for the low zeros. Asφ is Schwartz, only
low-lying zeros (i.e., zeros within a distance¿ 1

log cf
of the central points = 1

2
) con-

tribute significantly. Thus the1-level density can help identify the symmetry type of the
family.

Based in part on the function-field analysis whereG(F) is the monodromy group
associated to the familyF , it is conjectured that for each reasonable irreducible family
of L-functions there is an associated symmetry groupG(F) (one of the following five:
unitaryU , symplectic USp, orthogonal O, SO(even), SO(odd)), and that the distribution
of critical zeros near1

2
mirrors the distribution of eigenvalues near1. The five groups

have distinguishable1-level densities.
To evaluate (1.2), one applies the explicit formula, converting sums over zeros to

sums over primes. By [KS1], the1-level densities for the classical compact groups are

W1,SO(even)(x) = K1(x, x)
W1,SO(odd)(x) = K−1(x, x) + δ(x)
W1,O(x) = 1

2
W1,SO(even)(x) + 1

2
W1,SO(odd)(x)

W1,U(x) = K0(x, x)
W1,USp(x) = K−1(x, x)

whereK(y) = sin πy
πy

, Kε(x, y) = K(x− y) + εK(x + y) for ε = 0,±1, andδ(x) is the
Dirac delta functional. It is often more convenient to work with the Fourier transforms
of the densities:

Ŵ1,SO(even)(u) = δ(u) + 1
2
I(u)

Ŵ1,SO(odd)(u) = δ(u)− 1
2
I(u) + 1

Ŵ1,O(u) = δ(u) + 1
2

Ŵ1,U(u) = δ(u)

Ŵ1,USp(u) = δ(u)− 1
2
I(u),

whereI(u) is the characteristic function of[−1, 1].
We study families of Dirichlet characters below. Hughes and Rudnick [HR] show that

for the family of primitive characters with prime conductor, the1-level density agrees
with Unitary matrices for test functionsφ with supp(φ̂) ∈ [−2, 2]. Our goal is to show
how reasonable conjectures allow us to increase the support. In this regard our work is
similar to [ILS], where they show that if a classical exponential sum over primes has
some cancellation, then the1-level density of weightk level1 cusp forms (split by sign)
agrees with the corresponding orthogonal group forsupp(φ̂) ⊂ (−22

9
, 22

9
). For us, the

corresponding quantities involve the modulus dependence in the error terms in primes
in residue classes, and relates how natural conjectures on the distributions of primes
can be used to provide further support for the density conjectures. We sketch two cases
below.
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Let q either be prime or range over primes in[N, 2N ]. Let

ψ(x) =
∑
n≤x

Λ(n)

ψ(x, q, a) =
∑
n≤x

n≡a mod q

Λ(n)

E(x, q, a) = ψ(x, q, a)− ψ(x)

φ(q)
. (1.3)

If we assume GRH, we have (we could replaceε with powers oflog below) that

ψ(x) = x + O(x
1
2
+ε)

ψ(x, q, a) =
ψ(x)

φ(q)
+ O(x

1
2 · (xq)ε)

E(x, q, a) = O(x
1
2 · (xq)ε). (1.4)

Probabilistic arguments suggest thatE(x, q, a) should be much smaller. Expect-
ing square-root cancellation, we haveφ(q) residue classes. Note

∑q−1
a=1 E(x, q, a) =

O(x
1
2
+ε). If the error of sizex

1
2
+ε is spread among theseφ(q) classes equally, we ex-

pect eachψ(x, q, a) to be of sizeψ(x)
φ(q)

with errors of size
√

x
φ(q)

· (xq)ε; see [Mon1]. It

is by gaining some savings inq in the errorE(x, q, a) that we can increase the support
for families of DirichletL-functions. Explicitly, consider the following weaker version
of Montgomery’s Conjecture:

Conjecture 1.1. There is aθ ∈ [0, 1
2
) such that forq prime

E(x, q, 1) ¿ qθ ·
√

x

φ(q)
· (xq)ε. (1.5)

Conjecture 1.1 implies

Theorem 1.2. Assume Conjecture 1.1 holds. Then the1-level density agrees with Uni-
tary matrices for any test function of finite support.

Consider the total variance

V (x, q) =

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− x

φ(q)

∣∣∣∣
2

; (1.6)

dividing by 1
φ(q)

would give the average variance.
Goldston and Vaughan [GV] have shown that under GRH,
∑
q≤Q

V (x, q) = Qx log Q− cxQ + O
(
Q2(x/Q)

1
4
+ε + x

3
2 (log 2x)

5
2 (log log 3x)2

)
.

(1.7)
We shall only use such results whenq is prime. As each term is non-negative, this yields
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Theorem 1.3(Goldston-Vaughan). For q prime, assuming GRH we have∑
q≤Q

V (x, q) ¿ Qx log Q + Q
7
4 x

1
4
+ε + x

3
2
+ε (1.8)

Note we subtract x
φ(q)

and not ψ(x)
φ(q)

in the definition ofV (x, q), though assuming
RH andQ À x2ε either gives the same results in terms of increasing the support (the
calculation is straightforward; see Lemma A.1 for details).

If eachE(x, q, a) were of size
√

x
φ(q)

· (xq)ε, we would expect

V (x, q) ∼ x · (xq)ε (1.9)

and ∑
q≤Q

V (x, q) ∼ Qx · (xQ)ε. (1.10)

In fact, Hooley has conjectured that (1.9) holds for some unspecified range ofq (replac-
ing ε with logarithms), and we shall show later that such a result also leads to improving
the support of the test function.

Instead of conjecturing bounds on individualE(u,m, a) we consider the relation of
E(u,m, 1) to the total variance.

Conjecture 1.4. There exists aθ ∈ [0, 1] such that for primem ∈ [N, 2N ] with N2 ¿
u ¿ N4−2θ,

2N∑
m=N

m prime

E(u,m, 1)2 ¿ N θ · 1

N

2N∑
m=N

m prime

m∑
a=1

(a,m)=1

E(u,m, a)2. (1.11)

Conjecture 1.4 is trivially true forθ = 1, and while it is unlikely to be true for
θ = 0, it is reasonable to expect it to hold forθ = ε (for any ε > 0). What we
need is some control over biases of primes congruent to1 mod m. For the residue
classa mod m, E(u,m, a)2 is the variance; the above conjecture can be interpreted as
boundingE(u,m, 1)2 in terms of the average variance. Interestingly,θ = 1 recovers
the1-level density result of support in(−2, 2). ADD REMARKS THAT ENOUGH
TO HAVE THE ERRORS OF QUADRATIC RESIDUES OF THE SAME MAG-
NITUDE. BY [RubSa]WE KNOW THE QUAD RES AND NON-RES BEHAVE
DIFFERENTLY MOST OF THE TIME.... From Conjecture 1.4 and the results of
Goldston and Vaughan we have

Theorem 1.5. LetFN be the family of primitive characters with prime conductorm ∈
[N, 2N ]. The1-level density forFN holds for test functions whose Fourier transforms
are supported in(−4 + 2θ, 4− 2θ).

In §2 we quickly review the proof that the1-level density for primitive Dirichlet
characters with prime conductorm agrees with Unitary matrices for test functions sup-
ported in(−2, 2); in Appendices B and C we show how to extend these results to odd
square-freem and then all odd square-free numbers in[N, 2N ]. In §3 we show how
the above (and other) conjectures on modulus dependence on the errors of primes in
residue classes lead to increasing the support of the test functions, as well as comment-
ing in what sense Conjecture 1.4 is weaker than Conjecture 1.1.
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2. DIRICHLET CHARACTERS FROM APRIME CONDUCTOR

2.1. Review of Dirichlet Characters. If m is prime, then(Z/mZ)∗ is cyclic of order
m − 1 with generatorg (so any element is of the formga for somea). Let ζm−1 =
e2πi/(m−1). The principal characterχ0 is given by

χ0(k) =

{
1 if (k, m) = 1

0 if (k, m) > 1.
(2.1)

Each of them− 2 primitive characters are determined (because they are multiplica-
tive) once their action on a generatorg is specified. As eachχ : (Z/mZ)∗ → C∗, for
eachχ there exists anl such thatχ(g) = ζ l

m−1. Hence for eachl, 1 ≤ l ≤ m − 2 we
have

χl(k) =

{
ζ la
m−1 if k ≡ ga mod m

0 if (k, m) > 0.
(2.2)

Let χ be a primitive character modulom. Set

c(m,χ) =
m−1∑

k=0

χ(k)e2πik/m; (2.3)

c(m,χ) is a Gauss sum of modulus
√

m. The associatedL-function and its analytic
continuation are given by

L(s, χ) =
∏

p

(1− χ(p)p−s)−1

Λ(s, χ) = π−
1
2
(s+ε)Γ

(
s + ε

2

)
m

1
2
(s+ε)L(s, χ), (2.4)

where

ε =

{
0 if χ(−1) = 1

1 if χ(−1) = −1

Λ(s, χ) = (−i)ε c(m,χ)√
m

Λ(1− s, χ̄). (2.5)

Let φ be an even Schwartz function with compact support, say contained in the in-
terval (−σ, σ), and letχ be a non-trivial primitive Dirichlet character of conductorm.
The explicit formula (see [RS] for a proof) gives

∑
γ

φ

(
γ

log(m
π
)

2π

)
=

∫ ∞

−∞
φ(y)dy

−
∑

p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2

−
∑

p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1

+O

(
1

log m

)
, (2.6)
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where we are assuming GRH to write the zeros as1
2
+ iγ, γ ∈ R. Sometimes it is more

convenient to normalize the zeros not by the logarithm of the analytic conductor but
rather by something that is the same to first order. Explicitly, form ∈ [N, 2N ] we have

∑
γ

φ

(
γ

log(N
π
)

2π

)
=

log(m/π)

log(N/π)

∫ ∞

−∞
φ(y)dy

−
∑

p

log p

log(N/π)
φ̂

(
log p

log(N/π)

)
[χ(p) + χ(p)]p−

1
2

−
∑

p

log p

log(N/π)
φ̂

(
2

log p

log(N/π)

)
[χ2(p) + χ2(p)]p−1

+O

(
1

log N

)
; (2.7)

for any subsetN of [N, 2N ] we have

1

|N |
∑
m∈N

log(m/π)

log(N/π)
= 1 + O

(
1

log N

)
. (2.8)

ConsiderFm, the family of primitive characters modulo a primem. There arem− 2
elements in this family, given by{χl}1≤l≤m−2. As eachχl is primitive, we may use the
Explicit Formula. To determine the1-level density we must evaluate

∫ ∞

−∞
φ(y)dy − 1

m− 2

∑

χ 6=χ0

∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2

− 1

m− 2

∑

χ 6=χ0

∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1

+ O

(
1

log m

)
. (2.9)

Definition 2.1 (First and Second Sums). We call the two sums above the First Sum and
the Second Sum (respectively), denoting them byS1(m) andS2(m).

The Density Conjecture states that the family average should converge to the Unitary
Density: ∫ ∞

−∞
φ(y)dy. (2.10)

We prove this forφ̂ with suitable support, and show how various natural conjectures
allow us to increase the support.

2.2. The First Sum. We must analyze (form prime)

S1(m) =
1

m− 2

∑

χ 6=χ0

∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2 . (2.11)
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Since
∑

χ

χ(k) =

{
m− 1 if k ≡ 1 mod m

0 otherwise.
(2.12)

we have for any primep 6= m

∑

χ 6=χ0

χ(p) =

{
m− 2 if p ≡ 1 mod m

−1 otherwise.
(2.13)

Let

δm(p, 1) =

{
1 if p ≡ 1 mod m

0 otherwise.
(2.14)

The contribution to the sum fromp = m is zero; if instead we substitute−1 for∑
χ 6=χ0

χ(m), our error isO
(

1
log m

)
and hence negligible.

We now calculateS1(m), suppressing the errors ofO
(

1
log m

)
; φ̂ will be an even

Schwartz function with support in(−σ, σ).

S1(m) =
1

m− 2

∑

χ 6=χ0

∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2

=
1

m− 2

∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

) ∑

χ 6=χ0

[χ(p) + χ(p)]p−
1
2

=
2

m− 2

∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
p−

1
2 (−1 + (m− 1)δm(p, 1))

=
−2

m− 2

mσ∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
p−

1
2

+ 2
m− 1

m− 2

mσ∑

p≡1(m)

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
p−

1
2

¿ 1

m

mσ∑
p

p−
1
2 +

mσ∑

p≡1(m)

p−
1
2

¿ 1

m

mσ∑

k

k−
1
2 +

mσ∑
k≡1(m)
k≥m+1

k−
1
2

¿ 1

m

mσ∑

k

k−
1
2 +

1

m

mσ∑

k

k−
1
2

¿ 1

m
mσ/2. (2.15)

Note that we must be careful with the estimates of the second sum. Each residue
class ofk mod m has approximately the same sum, with the difference between two
classes bounded by the first term of whichever class has the smallest element. Since we
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are dropping the first term(k = 1), the class ofk ≡ 1(m) has the smallest sum of the
m classes. Hence if we add all the classes and divide bym, we increase the sum, so the
above arguments are valid.

HenceS1(m) = 1
m

mσ/2 + O
(

1
log m

)
, implying that there is no contribution from the

first sum ifσ < 2.

Remark 2.2. By a more careful analysis, in [HR] it is shown we may takeσ ≤ 2.

2.3. The Second Sum.We must analyze (form prime)

S2(m) =
1

m− 2

∑

χ 6=χ0

∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1. (2.16)

If p ≡ ±1(m) then
∑

χ 6=χ0
[χ2(p) + χ2(p)] = 2(m− 2). Otherwise, fix a generatorg

and writep ≡ ga(m). As p 6≡ ±1, a 6≡ 0, m−1
2

mod(m − 1), as(Z/mZ)∗ is cyclic of
orderm−1. Hencee4πia/(m−1) 6= 1. Recallζm−1 = e2πi/(m−1). Letx = e4πia/(m−1) 6= 1.

S =
∑

χ 6=χ0

[χ2(p) + χ2(p)] =
m−2∑

l=1

[χ2
l (p) + χ2

l (p)]

=
m−2∑

l=1

[χ2
l (g

a) + χ2
l (g

a)]

=
m−2∑

l=1

[(χl(g))2a + (χl(g))2a]

=
m−2∑

l=1

[(ζ l
m−1)

2a + (ζ l
m−1)

−2a]

=
m−2∑

l=1

[(ζ2a
m−1)

l + (ζ−2a
m−1)

l]

=
m−2∑

l=1

[xl + (x−1)l]

=
x− 1

1− x
+

x−1 − 1

1− x−1
= −2. (2.17)

The contribution to the sum fromp = m is zero; if instead we substitute−2 for∑
χ 6=χ0

χ2(m), our error isO
(

1
log m

)
and hence negligible.

Therefore ∑

χ6=χ0

[χ2(p) + χ2(p)] =
{2(m− 2) p ≡ ±1(m)

−2 p 6≡ ±1(m).
(2.18)

Let

δm(p,±) =

{
1 if p ≡ ±1 modm

0 otherwise
(2.19)
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Up toO
(

1
log m

)
we find that

S2(m) =
1

m− 2

∑

χ6=χ0

∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1

=
1

m− 2

∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

) ∑

χ6=χ0

[χ2(p) + χ2(p)]p−1

=
1

m− 2

mσ/2∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
p−1[−2 + (2m− 2)δm(p,±)]

¿ 1

m− 2

mσ/2∑
p

p−1 +
2m− 2

m− 2

mσ/2∑

p≡±1(m)

p−1

¿ 1

m− 2

mσ/2∑

k

k−1 +
mσ/2∑

k≡1(m)
k≥m+1

k−1 +
mσ/2∑

k≡−1(m)
k≥m−1

k−1

¿ 1

m− 2
log(mσ/2) +

1

m

mσ/2∑

k

k−1 +
1

m

mσ/2∑

k

k−1 + O

(
1

m

)

¿ σ

(
log m

m
+

log m

m
+

log m

m
+

1

m

)
. (2.20)

ThereforeS2(m) = O(σ log m
m

), so for all fixed, finiteσ there is no contribution.

2.4. Density Function from a Prime Conductor.

Theorem 2.3(Density Function from a Prime Conductor). Let φ̂ be an even Schwartz
function with supp(φ̂) ⊂ (−2, 2), m a prime, andFm = {χ : χ is primitive modm}.
Then assuming GRH we have

1

Fm

∑
χ∈Fm

∑

γ:L( 1
2
+iγ,χ)=0

φ

(
γ

log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy + O

(
1

log m

)
. (2.21)

Note the above theorem can trivially be modified to handle the family

FN = {χ : χ is primitive with conductorm for some primem ∈ [N, 2N ]}. (2.22)

It is possible to handle larger families (eitherm is square-free and tending to infinity,
or m is square-free and in[N, 2N ] with N →∞); see Appendices B and C for details.
This theorem was also proved by Hughes and Rudnick [HR], where they show we may
takeσ ≤ 2. We shall use this fact whenever needed below.

In the arguments below, where we try to extend the support, it is often useful to
havem ∈ [N, 2N ], as then we only need bounds to hold on average. There does not
appear to be any gain by extending our family to include square-freem. The reason
for this is that the cardinality of the two families, namely (1) primitive characters with
prime conductor in[N, 2N ] and (2) primitive characters with square-free conductor in
[N, 2N ], have approximately the same cardinality. The reason is that there are about
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N
log N

primes in[N, 2N ], so the families’ cardinalities differ only by powers oflog N .
Thus, in general if we are unable to obtain sufficient cancellation whenm is restricted to
prime values, we will not obtain the needed cancellation over square-free (as the prime
m’s are too large a subset).

3. NATURAL CONJECTURES TOEXTEND THE SUPPORT

Trivial estimation of prime sums yield the1-level density for families of DirichletL-
functions for supp(φ̂) ⊂ (−2, 2). We discuss some natural (we hope!) conjectures for
the distribution of primes in residue classes, and how these would allow us to increase
the support. Specifically, consider estimates of errors for the distribution of primes in
residue classes. Assuming GRH (and other reasonable), how are the errors or excesses
split among the various classes? Specifically, what is the modulus dependence on aver-
age?

3.1. Sums to Investigate.We state the sums that we must bound. Again the families
we shall investigate are eitherm prime and tending to infinity or

FN = {χ : χ is primitive with conductorm for some primem ∈ [N, 2N ]}. (3.1)

It is straightforward to extend many of our results to this second family. By (2.20) we
see that the second sum (the sum over the squares of primes) is always negligible for

any finite support. In fact, as long asσ = o
(

m
log m

)
these terms will not contribute.

The difficulty arises from the first sum (the sum over primes). By (2.15) we have

S1(m) =
2

m− 2

∑
p≤mσ

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
p−

1
2 (−1 + (m− 1)δm(p, 1)),

(3.2)

where

δm(p, 1) =

{
1 if p ≡ 1 mod m

0 otherwise.
(3.3)

It is natural to analyze (3.2) by partial summation. Forn prime let

an = (−1 + (m− 1)δm(n, 1)) log n

h(n) =
1

log(m/π)
φ̂

(
log n

log(m/π)

)
n−

1
2 ; (3.4)

setan = 0 if n is not prime andAm(x) =
∑

n≤x an. Then

S1(m) =
2

m− 2

∫ mσ

2

Am(u)h′(u)du + O

(
1

m

)
. (3.5)

By our previous arguments, there is no contribution from this term ifσ < 2. Thus for
σ > 1 it suffices to study

S1(m) =
2

m− 2

∫ mσ

m

Am(u)h′(u)du + o(1). (3.6)

If needed, by [HR] we may replace the lower bound ofm by m2.
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Noteh′(u) ¿ u−
3
2 . What is the true size ofAm(u)? Asm is prime,φ(m) = m − 1

and

Am(u) =
∑
p≤u

[−1 + φ(m)δm(p, 1)] log p

= φ(m)




∑
p≤u

p≡1 mod m

log p− 1

φ(m)

∑
p≤u

log p


 . (3.7)

Let

Bm(u) = φ(m)


 ∑

n≤u
n≡1 mod m

Λ(n)− 1

φ(m)

∑
n≤u

Λ(n)


 . (3.8)

We want to show|Am(u) − Bm(u)| is small. Clearly the contributions toBm(u) from
n = pν for ν ≥ 3 are bounded byφ(m)u

1
3 log u. Theν = 2 terms contribute

φ(m)




∑
p≤√u

p≡1 mod m

log p− 1

φ(m)

∑

p≤√u

log p


 = Am(

√
u). (3.9)

Thus

Bm(u)− Am(u) = Am(
√

u) + O(mu
1
3 log u). (3.10)

Repeating this argument gives

Bm(
√

u)− Am(
√

u) = Am( 4
√

u) + O(mu
1
6 log u). (3.11)

As trivially Am(x) ¿ x we have

|Bm(u)−Am(u)| ¿ [
Bm(

√
u)− Am( 4

√
u)

]
+ mu

1
3 log u ¿ Bm(

√
u) + mu

1
3 log u.
(3.12)

Assuming GRH, by (1.4) we haveBm(x) = φ(m)E(x,m, 1) = O(mx
1
2 · (xm)ε). Thus

the error fromBm(
√

u) may be absorbed by the other error, giving

Am(u) = Bm(u) + O
(
mu

1
3 log u

)
. (3.13)

Thus (3.6) becomes

S1(m) =
2

m− 2

∫ mσ

m

Bm(u)h′(u)du + O

(
1

m

∫ mσ

m

mu
1
3 log u · u− 3

2 du

)
+ o(1)

=
2

m− 2

∫ mσ

m

Bm(u)h′(u)du + O(m− 1
6
+ε) + o(1). (3.14)

Therefore to increase the support for the1-level density for the family of Dirichlet
characters with prime conductorm we need a good bound forBm(u).
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3.2. Bounds from Montgomery’s Conjecture. We now explore various bounds for
(3.14). NoteBm(u) = φ(m)E(u,m, 1). Probabilistic arguments (along the lines of the

central limit theorem; see [Mon1]) lead to the conjectureE(x, q, a) ¿
√

x
φ(q)

· (xq)ε.

Assuming such a bound gives

S1(m) ¿ 1

m

∫ mσ

m

φ(m)
u

1
2
+ε

m
1
2
−ε
· u− 3

2 du + o(1)

¿ m− 1
2
+ε

∫ mσ

m

uε−1du + o(1)

¿ mεσ− 1
2
+ε + o(1), (3.15)

and this iso(1) for fixedσ andε sufficiently small.
Of course, we only need such a bound fora = 1. We consider weaker versions of

Montgomery’s conjecture. Explicitly, recall Conjecture 1.1:

Conjecture 1.1: There is aθ ∈ [0, 1
2
) such that forq prime

E(x, q, 1) ¿ qθ ·
√

x

φ(q)
· (xq)ε. (3.16)

Conjecture 1.1 implies Theorem 1.2:

Proof of Theorem 1.2.AsBm(u) = φ(m)E(u,m, 1), substituting the bound forE(u,m, 1)
from Conjecture 1.1 in (3.14) yields

S1(m) ¿ 1

m

∫ mσ

m

φ(m) ·mθ− 1
2
+εu

1
2
+ε · u− 3

2 du + o(1)

¿ mθ− 1
2
+ε

∫ mσ

m

uε−1du + o(1)

¿ mεσ−( 1
2
−θ) + o(1). (3.17)

As long asθ < 1
2
, by choosingε sufficiently small the above iso(1) for any fixedσ. ¤

The above is amazing. Assuming GRH we haveE(u,m, 1) ¿ u
1
2 (um)ε. This bound

just fails, givingS1(m) ¿ mε(1+σ). Any power savings inm (logA m savings would
suffice forA sufficiently large) in boundingE(u,m, 1) leads to arbitrarily large support!

Remark 3.1. The consequence of Montgomery’s original conjecture extending the
range of support has been independently observed by others as well. See for exam-
ple [Sar]. Below we try and explore the consequences of weaker conjectures.

Let us consider the familyFN , where we consider all primitive characters with prime
conductorm ∈ [N, 2N ]. The sum over primes (the first sum) is now just

S1 =
1

|FN |
2N∑

m=N
m prime

S1(m). (3.18)
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There areπ(2N)− π(N) = N
log N

+ o
(

N
log N

)
primes in[N, 2N ], and for each primem

we haveφ(m) = m− 2 primitive characters. Thus

N2

log N
¿ |FN | ¿ N2

log N
; (3.19)

we will divide by |FN | instead ofm−2 as this is the cardinality of the family. Summing
(3.14) over the familyFN now gives

S1 =
2

|FN |
2N∑

m=N
m prime

∫ mσ

m

Bm(u)h′(u)du + o(1); (3.20)

UsingBm(u) = φ(m)E(u,m, 1) yields

S1 =
2

|FN |
∫ (2N)σ

N




2N∑
m=N

m prime

φ(m)E(u,m, 1)


 h′(u)du + o(1). (3.21)

ADD REMARK THAT CAN EXTEND INTEGRATION TO THESE BOUNDS.

Remark 3.2. We need to be a little careful as the above equation is slightly wrong.
Technicallyh′(u) has somem dependence. We have

h(u) =
1

log(m/π)
φ̂

(
log u

log(m/π)

)
u−

1
2

h′(u) =
1

log(m/π)

[
φ̂′

(
log u

log(m/π)

)
1

log(m/π)
+ φ̂

(
log u

log(m/π)

)]
u−

3
2 .

(3.22)

As m varies fromN to 2N , there are oscillations of size1
log N

in h′(u). There are two
solutions. If we are not interested in exploiting cancellation in sign in theE(u,m, 1),
then all is fine. If we do want to try and use the sign ofE(u,m, 1), instead of normaliz-
ing the zeros ofL(s, χ) (whereχ is a conductor with prime characterm) by log(m/π)

2π
we

should instead uselog(N/2π)
2π

. This leads to trivial modifications in the explicit formula
(see (2.7)). The reason such a change in scaling is tractable is that the conductors are
monotone increasing; see [Mil] for more on handling oscillation in conductors. In all
arguments below we assume these corrections have been made (if needed).

The following conjecture is an average version of Montgomery’s:

Conjecture 3.3. There exists aθ ∈ [0, 1
2
) such that for allε andu with N ¿ u ¿ Nσ

2N∑
m=N

m prime

φ(m)E(u,m, 1) ¿ N θ ·N2

√
u

N
(uN)ε ¿ N2−( 1

2
−θ−ε)u

1
2
+ε. (3.23)

The above is weaker as we have the potential for some cancellation because we have
signed errors; however, it is possible there may be no variation in sign (see Rubinstein
and Sarnak’s work on Chebyshev’s Bias [RubSa]). We immediately obtain
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Theorem 3.4.Assuming Conjecture 3.3, there is no contribution fromS1 for supp(φ̂) ⊂
(−σ, σ).

Proof. From (3.19), (3.21), and Conjecture 3.3 we have

S1 ¿ log N

N2

∫ (2N)σ

N

N2−( 1
2
−θ−ε)u

1
2
+ε · u− 3

2 du + o(1)

¿ N−( 1
2
−θ−ε) log N

∫ (2N)σ

N

uε−1du + o(1)

¿ N−( 1
2
−θ−ε) ·N εσ log N + o(1). (3.24)

As long asθ < 1
2

the above iso(1). ¤

Conjecture 3.3 is very plausible. Here we are summingsignedquantities, and only re-
quire slight cancellation in the modulus aspect. Consider the terms on the left hand side
of (3.23). By GRH, each is at mostNu

1
2 (uN)ε. Hence their sum is at mostN2+εu

1
2
+ε.

The existence of aθ ∈ [0, 1
2
) implies there is a small power savings in this signed sum,

and this is enough to obtain unlimited support (if we assume the conjecture holds for
all σ). It is also now possible that a small number of moduli have a large contribution;
for instance, for anyη < 1 there can beNη choices ofm ∈ [N, 2N ] such that

E(u,m, 1) ¿ N
1
2

√
u

N
(uN)ε ¿ N εu

1
2
+ε (3.25)

Thus the sum of these terms (weighted byφ(m)) is¿ N1+η+εu
1
2
+ε. As long as1+ η +

ε < 2, these terms will not contribute.
Is it reasonable to expect there to be oscillation in the signs ofE(u,m, 1), or do

we expect these terms to have the same signs? Note1 is always a quadratic residue,
so perhaps by the arguments in [RubSa] we should expect that most of the time these
are the same sign. Below we investigate conjectures where we do not try to exploit
cancellation by sign.

3.3. Conjectures for Distribution Among Residue Classes.We now investigate some
weaker conjectures. These will not yield unlimited support but have the advantage of
incorporating known results as well as allowing some biases among the residue classes.
We use the results of [HR] to replace

∫ mσ

m
with

∫ mσ

m2 . Recall Conjecture 1.4:

Conjecture 1.4: There exists aθ ∈ [0, 1] such that for primem ∈ [N, 2N ] with N2 ¿
u ¿ N4−2θ,

2N∑
m=N

m prime

E(u,m, 1)2 ¿ N θ · 1

N

2N∑
m=N

m prime

m∑
a=1

(a,m)=1

E(u,m, a)2. (3.26)

Note the right hand side of (3.26) isN θ−1(V (u, 2N)−V (u,N)). Conjecture 1.4 and
Goldston-Vaughan’s result imply Theorem 1.5:
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Theorem 1.5: Let FN be the family of primitive characters with prime conductor
m ∈ [N, 2N ]. The1-level density forFN holds for test functions whose Fourier trans-
forms are supported in(−4 + 2θ, 4− 2θ).

Conjecture 1.4 is trivially true forθ = 1, and while it is unlikely to be true for
θ = 0, it is reasonable to expect it to hold forθ = ε (for any ε > 0). What we need
is some control over biases of primes to be congruent to1 mod m. For the residue
classa mod m, E(u,m, a)2 is the variance; the above conjecture can be interpreted as
boundingE(u,m, 1)2 in terms of the average variance. Interestingly,θ = 1 recovers
the1-level density result of support in(−2, 2).

Bounds such as these are useful as, by using the Cauchy-Schwartz inequality, the
varianceE(u,m, 1)2 surfaces in investigating the1-level density sums. If we can
express the varianceE(u,m, 1)2 in terms of the average variance, the bounds from
Goldston-Vaughan are applicable. There is also the possibility of using higher moment
bounds and Holder’s Inequality instead of Cauchy-Schwartz (see [Va]); unfortunately,
Vaughan’s results only hold form “close” tou. Explicitly, u

3
4
+ε ¿ m ¿ u. To obtain

better support than(−2, 2), we needu À √
m.

The question is: for whatθ is the above conjecture “reasonable”? Can we glean a
reasonable value forθ from the arguments in say [RubSa], or from probabilistic argu-
ments on random primes (where with probability one we know RH is true for a random
sequence of primes – what is known there about error terms in congruence classes, and
how that depends on the modulus)?

One could probably work with all square-freem and not just primem in the Dirichlet
L-function’s densities; however, as the variances are positive, if bounds like this do not
hold form restricted to prime values, they will not hold form square-free (because we
are going for more than a logarithm savings).

Proof of Theorem 1.5.It suffices to show (3.21) is negligible forσ < 4− 2θ. We shall
only do the case when the second part of Conjecture 1.4 holds. We must therefore study

S1 =
2

|FN |
∫ (2N)σ

N




2N∑
m=N

m prime

φ(m)E(u,m, 1)h′(u)


 du + o(1). (3.27)

Using Cauchy-Schwartz and Conjecture 1.4 we have
∣∣∣∣∣∣∣

2N∑
m=N

m prime

φ(m)E(u,m, 1)h′(u)

∣∣∣∣∣∣∣
≤

√√√√√
2N∑

m=N
m prime

φ(m)2h′(u)2

√√√√√
2N∑

m=N
m prime

E(u,m, 1)2

¿ N
3
2 |h′(u)| ·

√√√√√N θ · 1

N

2N∑
m=N

m prime

m∑
a=1

(a,m)=1

E(u,m, a)2

¿ N
3
2 |h′(u)| ·

√
N θ−1(V (u, 2N)− V (u,N)).

(3.28)
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Using Goldston-Vaughan’s bounds (Theorem 1.3) yields∣∣∣∣∣∣∣

2N∑
m=N

m prime

φ(m)E(u,m, 1)h′(u)

∣∣∣∣∣∣∣
¿ N1+ θ

2 |h′(u)| ·
√

V (u, 2N)− V (u,N)

¿ N1+ θ
2 ·

√
Nu log N + N

7
4 u

1
4
+ε + u

3
2
+ε

¿
[
N

3
2
+ε+ θ

2 u
1
2 + N

15
8

+ θ
2 u

1
8
+ε + N1+ θ

2 u
3
4
+ε

]
|h′(u)|.
(3.29)

Recallh′(u) ¿ u−
3
2 andlog N ¿ N ε. We have (ε changes from line to line)

S1 ¿ log N

N2

∫ (2N)σ

N2

[
N

3
2
+ε+ θ

2 u
1
2 + N

15
8

+ θ
2 u

1
8
+ε + N1+ θ

2 u
3
4
+ε

]
u−

3
2 du + o(1)

¿ N− 1
2
+ θ

2
+ε

∫ (2N)σ

N2

u−1du + N− 1
16

+ θ
2
+ε

∫ (2N)σ

N2

u−
11
8

+εdu

+ N−1+ θ
2
+ε

∫ (2N)σ

N2

u−
3
4
+εdu + o(1)

¿ N− 1
2
+ θ

2
+ε + N− 1

16
+ θ

2
+ε(N2)−

3
8
+ε + N−1+ θ

2
+ε(Nσ)

1
4
+ε + o(1)

¿ N− 1−θ+ε
2 + N− 13−8θ+ε

16 + N4(σ−(4−2θ)) + o(1). (3.30)

The first term is negligible whenθ < 1, the second term whenθ < 13
8

and the third
whenσ < 4− 2θ. Therefore, as long asθ < 1 we may take anyσ < 4− 2θ. ¤
Remark 3.5. The reason Conjecture 1.4 only allows us to go up toσ < 4 − 2θ is
because of theO(x

3
2
+ε) error in Theorem 1.3. Assume we could replace that error with

O(x1+η+ε) for someη ∈ [0, 1
2
]. Then we would replaceu

3
4
+ε with u

1
2
+ η

2
+ε. This piece

would now give

N−1+ θ
2
+ε

∫ (2N)σ

N2

u−1+ η
2
+εdu ¿ N−1+ θ

2
+εN

ησ
2

+εσ

¿ N ( η
2
+ε)σ−(1− θ

2
+ε). (3.31)

Thus there is no contribution for

σ <
1− θ

2
+ ε

η
2

+ ε
, (3.32)

or for

σ <
2− θ

η
. (3.33)

If we could takeη arbitrarily close to0 then we would have unlimited support. Note
thatθ = 1 andη = 1/2 (both of which are valid choices) recoversσ < 2.

Remark 3.6. ForN2 ¿ u ¿ Nσ, we discuss in what sense Conjecture 1.4,
2N∑

m=N
m prime

E(u,m, 1)2 ¿ Nη · 1

N

2N∑
m=N

m prime

m∑
a=1

(a,m)=1

E(u,m, a)2, η ∈ [0, 1) (3.34)
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is weaker than Conjecture 1.1,

E(x, q, 1) ¿ qθ ·
√

x

φ(q)
· (xq)ε, θ ∈ [0,

1

2
); (3.35)

we could use Conjecture 3.3 instead of Conjecture 1.1, but we would obtain similar
results. The two conjectures are essentially equivalent foru such thatN2 ¿ u ¿
N4−2η, with θ + 1

2
playing the role ofη.

If eachE(u,m, 1) ¿ mθ− 1
2 u

1
2 (um)ε, then

2N∑
m=N

m prime

E(u,m, 1) ¿ N θ+ 1
2
+εu

1
2 . (3.36)

Using Theorem 1.3, Conjecture 1.4 and Cauchy-Schwartz gives

2N∑
m=N

m prime

E(u,m, 1) ≤




2N∑
m=N

m prime

E(u,m, 1)2




1
2



2N∑
m=N

m prime

1




1
2

¿


Nη−1

2N∑
m=N

m prime

m∑
a=1

(a,m)=1

E(u,m, a)2




1
2

·N 1
2

¿
(
Nη−1

(
N1+εu + N

7
8
+εu

1
4 + u

3
2
+ε

)) 1
2 ·N 1

2

¿ N
η
2
+ε

(
N

1
2 + N

7
8 u−

3
8 + u

1
4

)
u

1
2

¿ N
η
2
+εu

1
4 · u 1

2 , (3.37)

because asu À N2, the dominant term is the last. The two conjectures provide identical
bounds for the sum of interest,

∑
m E(u,m, 1), whenN2 ¿ u ¿ N4−2η−4η′ (with θ+ 1

2
equivalent to1− η′).

While we expect the variance sum to be of sizeNu · N ε, the best bounds (Theorem
1.3) have an error of sizeu

3
2
+ε. This bound is larger than what we expect the truth to

be for u
1
2 À N ; however, it is exactly such a range that we need to investigate, and

whenu is so much larger thanN , results are harder to obtain. If the error were such
thatNu ·N ε was always the main term, then we would regain Conjecture 1.1 (actually
Conjecture 3.3). Thus Conjecture 1.4 is basically the average version of Montgomery’s
conjecture whenu is restricted toN2 ¿ u ¿ N4−2η−4η′; however, as we are using
Goldston and Vaughan’s results on the variance, we feel this does provide some support
for Montgomery’s conjecture.

3.4. Analogue of Theorem 1.5 forFm.

Conjecture 3.7. There exists aθ ∈ [0, 1] such that for all primem (or at least a
sequence of primes tending to infinity), ifm2 ¿ u ¿ m4−2θ then

E(u,m, 1)2 ¿ mθ · 1

φ(m)

m∑
a=1

(a,m)=1

E(u,m, a)2. (3.38)
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For the above conjecture to imply an analogue of Theorem 1.5 for the familyFm

(primitive characters with prime conductorm), we need an analogue of Theorem 1.3
where we do not sum overm. Hooley has conjectured that (1.9), namely

V (x, q) ∼ x · (xq)ε, (3.39)

holds for some unspecified range ofq relative tox. In [Ho] he shows (1.9) is true
for almost allq ∈ [Q

2
, Q] with x(log x)−A < Q ≤ x, and under GRH the range may

be extended tox
4
5
+ε < Q ≤ x. This range was extended further by Friedlander and

Goldston [FG] tox
3
4
+ε < Q ≤ x. If we assume that we can find a sequence of primes

m such that (1.9) holds for allu with m2 ¿ u ¿ mσ, then we can prove the analogue
of Theorem 1.5 forFm. From (3.14) and recalling thatBm(u) = φ(m)E(u,m, 1) we
have

S1(m) ¿ 1

m

∫ mσ

m2

φ(m)|E(u,m, 1)|u− 3
2 du + o(1)

¿ φ(m)

m

∫ mσ

m2


mθ · 1

φ(m)

m∑
a=1

(a,m)=1

E(u,m, a)2




1
2

u−
3
2 du + o(1)

¿
∫ mσ

m2

(
mθ−1u(um)ε

) 1
2 u−

1
2 du + o(1)

¿ m
θ
2
− 1

2
+ε

∫ mσ

m2

u−1du + o(1)

¿ m
θ
2
− 1

2
+ε′ + o(1). (3.40)

As long asθ < 1, S1(m) is negligible.
We do not need the full strength of 3.7. As Hooley’s conjecture (and results towards

it) hold with log x and log q instead ofxε and qε, we may replacemθ by m
logC m

for
C sufficiently large. While Hooley’s conjecture gives arbitrarily large support, it is
important to note that the difficulty in the proof of Theorem 1.5 was in the error terms
in Goldston-Vaughan’s bound (Theorem 1.3). Thus we should be careful about our
assumptions on the error terms in Hooley’s conjecture whenm is much smaller thanu.

APPENDIX A. ALTERNATE FORM OF THEGOLDSTON-VAUGHAN BOUND

Lemma A.1. Let

W (x, q) =

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− ψ(x)

φ(q)

∣∣∣∣
2

. (A.1)

Assume RH. Then forQ À x2ε

∑
q≤Q

W (x, q) ¿ Qx log Q + Q
7
4 x

1
4
+ε + x

3
2
+ε (A.2)

where the sum is over primeq.
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Proof. We have

W (x, q) =

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− ψ(x)

φ(q)

∣∣∣∣
2

=

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− x

φ(q)
+

x

φ(q)
− ψ(x)

φ(q)

∣∣∣∣
2

≤ 3

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− x

φ(q)

∣∣∣∣
2

+ 3

q∑
a=1

(a,q)=1

∣∣∣∣
x

φ(q)
− ψ(x)

φ(q)

∣∣∣∣
2

≤ 3

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− x

φ(q)

∣∣∣∣
2

+ 3

q∑
a=1

(a,q)=1

∣∣∣∣∣
O(x

1
2
+ε)

φ(q)

∣∣∣∣∣

2

≤ 3

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− x

φ(q)

∣∣∣∣
2

+ O

(
x1+2ε

φ(q)

)
. (A.3)

Summing over primeq ≤ Q gives
∑
q≤Q

W (x, q) ¿
∑
q≤Q

V (x, q) + x1+2ε
∑
q≤Q

1

φ(q)
; (A.4)

the proof is completed by using Goldston and Vaughan’s bound for the sum ofV (x, q).
Note we used GRH to givex− ψ(x) = O(x

1
2
+ε), and then

∑
q≤Q

1
φ(q)

¿ log Q asq is
prime. AsQ À x2ε, we may replacex1+2ε with Qx. ¤

APPENDIX B. DIRICHLET CHARACTERS FROM ASQUARE-FREENUMBER

Fix anr and letm1, . . . , mr be distinct odd primes. Let

m = m1m2 · · ·mr

M1 = (m1 − 1)(m2 − 1) · · · (mr − 1) = φ(m)

M2 = (m1 − 2)(m2 − 2) · · · (mr − 2). (B.1)

M2 is the number of primitive characters modm, each of conductorm. For eachli ∈
[1,mi − 2] we have the primitive character discussed in the previous section,χli. A
general primitive character modm is given by a product of these characters:

χ(u) = χl1(u)χl2(u) · · ·χlr(u) (B.2)

Let F = {χ : χ = χl1χl2 · · ·χlr}. Then|F| = M2, and we are led to investigating
the following sums:

S1 =
1

M2

∑
p

log p

log(m/π)
φ̂

(
log p

log(m/π)

)
p−

1
2

∑
χ∈F

[χ(p) + χ(p)]

S2 =
1

M2

∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
p−1

∑
χ∈F

[χ2(p) + χ2(p)] (B.3)
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B.1. The First Sum (m Square-free). We must study
∑

χ∈F χ(p) (the sum withχ is
handled similarly). In the previous section we showed

mi−2∑

li=1

χli(p) =

{
mi − 1− 1 if p ≡ 1 mod mi

−1 otherwise.
(B.4)

Define

δmi
(p, 1) =

{
1 if p ≡ 1 mod mi

0 otherwise.
(B.5)

Then

∑
χ∈F

χ(p) =

m1−2∑

l1=1

· · ·
mr−2∑

lr=1

χl1(p) · · ·χlr(p)

=
r∏

i=1

mi−2∑

li=1

χli(p)

=
r∏

i=1

(−1 + (mi − 1)δmi
(p, 1)). (B.6)

Let us denote byk(s) an s-tuple(k1, k2, . . . , ks) with k1 < k2 < · · · < ks. This is just
a subset of{1, 2, . . . , r}. There are2r possible choices fork(s). We will use these to
expand the above product. Define

δk(s)(p, 1) =
s∏

i=1

δmki
(p, 1). (B.7)

If s = 0 we defineδk(0)(p, 1) = 1 for all p. Then
r∏

i=1

(−1 + (mi − 1)δmi
(p, 1)) =

r∑
s=0

∑

k(s)

(−1)r−sδk(s)(p, 1)
s∏

i=1

(mki
− 1). (B.8)

Let h(p) = 2 log p
log(m/π)

φ̂
(

log p
log(m/π)

)
¿ ||φ̂||. Then

S1 =
mσ∑
p

1

2
h(p)p−

1
2

1

M2

∑
χ∈F

[χ(p) + χ(p)]

=
mσ∑
p

h(p)p−
1
2

1

M2

r∑
s=0

∑

k(s)

(−1)r−sδk(s)(p, 1)
s∏

i=1

(mki
− 1)

¿
mσ∑
p

p−
1
2

1

M2


1 +

r∑
s=1

∑

k(s)

δk(s)(p, 1)
s∏

i=1

(mki
− 1)


 . (B.9)

Observing thatm/M2 ≤ 3r we see thes = 0 sum contributes

S1,0 =
1

M2

mσ∑
p

p−
1
2 ¿ 3rm

1
2
σ−1, (B.10)
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hence negligible forσ < 2. Now we study

S1,k(s) =
1

M2

s∏
i=1

(mki
− 1)

mσ∑
p

p−
1
2 δk(s)(p, 1). (B.11)

The effect of the factorδk(s)(p, 1) is to restrict the summation to primesp ≡ 1(mki
)

for ki ∈ k(s). The sum will increase if instead of summing over primes satisfying
the congruences we sum over all numbersn satisfying the congruences (withn ≥
1 +

∏s
i=1 mki

). But now that the sum is over integers and not primes, we can use basic
uniformity properties of integers to bound it. We are summing integers mod

∏s
i=1 mki

,
so summing over integers satisfying these congruences is basically just

∏s
i=1(mki

)−1

∑mσ

n=1 n−
1
2 =

∏s
i=1(mki

)−1m
1
2
σ. We can do this as the sum of the reciprocals from the

residue classes of
∏s

i=1 mki
differ by at most their first term. Throwing out the first term

of the class1 +
∏s

i=1 mki
makes it have the smallest sum of the

∏s
i=1 mki

classes, so
adding all the classes and dividing by

∏s
i=1 mki

increases the sum.
Hence (recallingm/M2 ≤ 3r)

S1,k(s) ¿ 1

M2

s∏
i=1

(mki
− 1)

s∏
i=1

(mki
)−1m

1
2
σ

¿ 3rm
1
2
σ−1. (B.12)

Therefore,∀s theS1,k(s) contribute3rm
1
2
σ−1. There are2r choices, yielding

S1 ¿ 6rm
1
2
σ−1, (B.13)

which is negligible asm goes to infinity for fixed r ifσ < 2. We cannot letr go to
infinity in the arguments above because ifm is the product of the firstr primes, then for
r large,

log m =
r∑

k=1

log p

=
∑
p≤r

log p ∼ r

→ 6r ∼ mlog 6 ∼ m1.79. (B.14)

B.2. The Second Sum (m Square-free). We must study
∑

χ∈F χ2(p) (the sum withχ
is handled similarly). In the previous section we showed

mi−2∑

li=1

χ2
li
(p) =

{
mi − 1− 1 if p ≡ ±1 mod mi

−1 otherwise.
(B.15)
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Then
∑
χ∈F

χ2(p) =

m1−2∑

l1=1

· · ·
mr−2∑

lr=1

χ2
l1
(p) · · ·χ2

lr(p)

=
r∏

i=1

mi−2∑

li=1

χ2
li
(p)

=
r∏

i=1

(−1 + (mi − 1)δmi
(p, 1) + (mi − 1)δmi

(p,−1)). (B.16)

We now show the Second Sum is negligible for allσ. Instead of having2r terms
we have3r. Let k(s) be as before, and letj(s) be an s-tuple of±1s. As s ranges
from 0 to r we get each of the3r possibilities, as for a fixeds, there are

(
r
s

)
choices

for k(s), each of these having2s choices forj(s). But
∑r

s=0 2s
(

r
k

)
= (1 + 2)r. Let

h(p) = 2 log p
log(m/π)

φ̂
(
2 log p

log(m/π)

)
¿ ||φ̂||. Define

δk(s)(p, j(s)) =
s∏

i=1

δmki
(p, ji). (B.17)

Then ∑
χ∈F

χ2(p) =
r∑

s=0

∑

k(s)

∑

j(s)

(−1)r−sδk(s)(p, j(s))
s∏

i=1

(mki
− 1) (B.18)

Therefore

S2 =
1

M2

∑
p

log p

log(m/π)
φ̂

(
2

log p

log(m/π)

)
p−1

∑
χ∈F

[χ2(p) + χ2(p)]

=
1

M2

∑
p

h(p)
r∑

s=0

∑

k(s)

∑

j(s)

p−1(−1)r−sδk(s)(p, j(s))
s∏

i=1

(mki
− 1)

¿ 1

M2

∑
p

r∑
s=0

∑

k(s)

∑

j(s)

p−1δk(s)(p, j(s))
s∏

i=1

(mki
− 1)

=
r∑

s=0

∑

k(s)

∑

j(s)

S2,k(s),j(s). (B.19)

The term wheres = 0 is handled easily (recallm/M2 ≤ 3r):

S2,0,0 =
1

M2

mσ∑
p

p−1 ¿ 3r log mσ

m
. (B.20)

We would like to handle the terms fors 6= 0 analogously as before. The congruences
on p from k(s) andj(s) force us to sum only over certain primes mod

∏s
i=1 mki

, with
each prime satisfyingp ≥ mki

± 1. We increase the sum by summing over all integers
satisfying these congruences. As each congruence class mod

∏s
i=1 mki

has basically
the same sum, we can bound our sum over primes satisfying the congruencesk(s), j(s)

by
∏s

i=1(mki
)−1

∑mσ

n=1 n−1 =
∏s

i=1(mki
)−1 log mσ.
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There is one slight problem with this argument. Before each prime was congruent to
1 mod each primemki

, hence the first prime occurred no earlier than at1 +
∏s

k=1 mki
.

Now, however, some primes are congruent to+1 modmki
, some to−1, and it is possi-

ble the first such prime occurs before
∏s

k=1 mki
.

For example, say the prime is congruent to+1 mod 11, and−1 mod 3, 5, 17. We
want the prime to be greater than3 · 5 · 11 · 17, but3 · 5 · 17− 1 is congruent to−1 mod
3, 5, 17 and+1 mod11. (Fortunately it equals 254, which is composite).

So, for each pair(k(s), j(s)) we handle all but the possibly first prime as we did in
the First Sum case. We now need an estimate on the possible error for low primes.
Fortunately, there is at most one for each pair, and as our sum has a1

p
, we can expect

cancellation if it is large.
Fix now a pair (remember there are at most3r pairs). As we never specified the

order of the primesmi, without loss of generality (basically, for notational convenience)
we may assume that our primep is congruent to+1 mod mk1 · · ·mka, and−1 mod
mka+1 · · ·mks.

The contribution to the second sum from the possible low prime in this pair is

1

M2

1

p

s∏
i=1

(mki
− 1). (B.21)

How small canp be? The+1 congruences imply thatp ≡ 1(mk1 · · ·mka), sop is at least
mk1 · · ·mka + 1. Similarly the−1 congruences implyp is at leastmka+1 · · ·mks − 1.
Since the product of these two lower bounds is greater than

∏s
i=1(mki

− 1), at least one

must be greater than(
∏s

i=1(mki
− 1))

1
2 . Therefore the contribution to the second sum

from the possible low prime in this pair is bounded by (rememberm/M2 ≤ 3r)

1

M2

(
s∏

i=1

(mki
− 1)

) 1
2

≤ m
1
2

M2

≤ 3rm− 1
2 . (B.22)

Combining this with the estimate for the primes larger than
∏s

i=1(mki
− 1) yields

S2,k(s),j(s) ¿ 3rm− 1
2 +

3r

m
log mσ, (B.23)

yielding (as there are3r pairs)

S2 =
r∑

s=0

∑

k(s)

∑

j(s)

S2,k(s),j(s) ¿ 9rm− 1
2 . (B.24)

B.3. Density Function in the Square-free case.

Theorem B.1(Density Function for Square-free m). Letφ̂ be an even Schwartz function
with supp(φ̂) ⊂ (−2, 2). Fix anr ≥ 1. LetFm = {χ : χ is primitive modm}, wherem
is a square-free odd integer. Then assuming GRH we have

1

Fm

∑
χ∈Fm

∑

γ:L( 1
2
+iγ,χ)=0

φ

(
γ

log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy + O

(
1

log m

)
. (B.25)

We note for future reference the following bounds on the First and Second sums:
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Lemma B.2. Let m be a square-free odd integer withr = r(m) factors. Letm =∏r
i=1 mi and M2 =

∏r
i=1(mi − 2). Consider the familyFm of primitive characters

mod m. There areM2 such characters, and the First and Second sums satisfy the
following bounds:

S1 ¿ 1

M2

2rm
1
2
σ

S2 ¿ 1

M2

3rm
1
2 . (B.26)

APPENDIX C. DIRICHLET CHARACTERS FROMSQUARE-FREENUMBERS

We now generalize the results of the previous section to consider the familyFN of all
primitive characters whose conductor is an odd square-free integer in[N, 2N ]. Some of
the bounds below can be improved, but as the improvements do not increase the range
of convergence, they will only be sketched.

First we calculate the number of primitive characters arising from odd square-free
numbersm ∈ [N, 2N ]. Let n = n1n2 · · ·nr. Thenn contributes(n1 − 2) · · · (nr − 2)
characters. On average we might expect this to be (up to a constant)N , and as a positive
percent of numbers are square-free, we might expect there to becN2 characters.

Instead we prove there are at leastN2/ log2 N primitive characters in the family.
There are at leastN/ log2 N + 1 primes in the interval. For each primep (except
possibly the first) we havep− 2 ≥ N . Hence there are at leastN · N

log2 N
= N2 log−2 N

primitive characters. LetM = |F|. Then

M ≥ N2 log−2 N ⇒ 1

M
≤ log2 N

N2
. (C.1)

We recall the results from the previous section. Fix an odd square-free numberm ∈
[N, 2N ], and saym hasr = r(m) factors. Before we divided the First and Second sums
by M2 = (m1 − 2) · · · (mr − 2), as this was the number of primitive characters in our
family. Now we divide byM . Hence the contribution to the First and Second sum from
this m is

S1,m ¿ 1

M
2r(m)m

1
2
σ

S2,m ¿ 1

M
3r(m)m

1
2 . (C.2)

Note that2r(m) = τ(m), the number of divisors ofm. While it is possible to prove
∑
n≤x

τ l(n) ¿ x(log x)2l−1 (C.3)

the crude bound

τ(n) ≤ c(ε)nε (C.4)
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yields the same region of convergence. Note3r(m) ≤ τ 2(m). Therefore the contribu-
tions to the first sum is majorized by

S1 =
2N∑

m=N
m square−free

S1,m

¿
2N∑

m=N

1

M
2r(m)m

1
2
σ

¿ 1

M
N

1
2
σ

2N∑
m=N

τ(m)

¿ 1

M
N

1
2
σc(ε)N1+ε

¿ log2 N

N2
N

1
2
σc(ε)N1+ε

¿ c(ε)N
1
2
σ+ε−1 log2 N. (C.5)

For σ < 2, choosingε < 1 − 1
2
σ yieldsS1 goes to zero asN tends to infinity. ForS2

we have

S2 =
2N∑

m=N
m squarefree

S2,m

¿
2N∑

m=N

1

M
3r(m)m

1
2

¿ 1

M
N

1
2

2N∑
m=N

τ 2(m)

¿ c(ε)
log2 N

N2
N

1
2 N1+2ε

¿ c(ε)N2ε− 1
2 log2 N. (C.6)

which converges to zero asN tends to infinity for allσ. Hence we have proved

Theorem C.1 (Dirichlet Characters from Square-free Numbers). Let FN denote the
family of primitive Dirichlet characters arising from odd square-free numbersm ∈
[N, 2N ]. Denote the conductor ofχ by c(χ). Then∀σ < 2

1

FN

∑
χ∈FN

∑

γ:L( 1
2
+iγ,χ)=0

φ

(
γ

log(c(χ)/π)

2π

)
=

∫ ∞

−∞
φ(y)dy + O(

1

log N
). (C.7)
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