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Abstract

We will discuss many of Euler’s gems.All notes were taken in real-time; all
mistakes should be attributed to the typist, not to the lecturer.
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Chapter 1

Perfect Numbers: Wednesday,
October 8, 2003

Lecturer: Scott Arms

1.1 Definitions

Definition 1.1.1 (Proper Divisor). m is a proper divisor ofn if m|n andm < n.

Definition 1.1.2 (Perfect Number).A natural numbern is perfect if and only if
it is equal to the sum of all its proper divisors.

Examples are6, 28, as well as213466916(213466917 − 1); the last is the largest
known to date, more than 8 million digits!

Before Euler, 7 perfect numbers were known. Euler, in 1772, found the eighth
perfect number,230(231 − 1).

1.2 Ancient Results

Theorem 1.2.1 (Euclid). If 2k − 1 is prime, then2k−1(2k − 1) is perfect.

Proof. Let N = 2k−1(2k − 1) = 2k−1p. Then we can write down the sum of the
divisors quite easily:
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∑
d|N

N>d>0

d = (1 + 2 + · · ·+ 2k−1) + p(1 + 2 + · · ·+ 2k−2)

= (2k − 1) + p(2k−1 − 1)

= p(2k−1 + 1− 1)

= p · 2k−1 = N. (1.1)

Before Euler, only the first seven perfect numbers were known. In addition to
finding a new perfect number, Euler provided a characterization for even perfect
numbers: now one only needs a characterization of odd perfect numbers to have
a complete theory! To date, only partial results concerning odd perfect numbers
are known (they must be at least so large, they must have at least so many factors,
and so on).

1.3 Euler’s Characterization of Even Perfect Num-
bers

Define a functionσ : N→ N by

σ(n) =
∑
d|N
d>0

d. (1.2)

Lemma 1.3.1.n is perfect if and only ifσ(n) = 2n.

Lemma 1.3.2.p is prime if and only ifσ(p) = p + 1.

Lemma 1.3.3. If the greatest common divisor ofm andn is 1 (ie, if (m,n) = 1),
thenσ(mn) = σ(m)σ(n).

Exercise 1.3.4.Proveσ(2k−1) = 2k − 1.

Theorem 1.3.5 (Euler). If N is a perfect even number, thenN = 2k−1(2k − 1)
for some integerk ∈ N, and2k − 1 is prime.
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Proof. By unique factorization, we can writeN = 2k−1m for some oddm ∈ N.
Thus,(2k−1,m) = 1, so

σ(N) = σ(2k−1)σ(m). (1.3)

Further,N is perfect, so

σ(N) = 2N = 2km. (1.4)

Therefore,

2km = (2k − 1)σ(m). (1.5)

Since2k − 1 is odd,2k − 1 dividesm. Let m = (2k − 1)M . Thus,

2k(2k − 1)M = (2k − 1)σ(m). (1.6)

Therefore,

2kM = σ(m). (1.7)

Note thatM |m, implying

2kM = σ(m)

≥ m + M

= (2k − 1)M + M

= M(2k − 1 + 1)

= 2kM. (1.8)

As we have the same at the start and the end, we must have equality every-
where. Thus,

σ(m) = m + M. (1.9)

Thus,m is prime andM = 1.

Remark 1.3.6. Where do we use thatN is even, ie, where do we use thatk > 1?
If k = 0, impossible. Ifk = 1, thenm andM are not different; ifk ≥ 2, then
M < m.
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1.4 Odd Perfect Numbers

Regius defined perfect numbers to be even (around 1550). We have a nice charac-
terization of even perfect numbers. What can we say about odd perfect numbers?
Do they exist? No one can find any.

Suppose an odd perfect number exists. Can we say anything about the proper-
ties it must have?

Frenicle (1657) stated the following, first proved by Euler.

Theorem 1.4.1 (Frenicle-Euler). If N is an odd perfect number, thenN =
pk

1p
2j2
2 · · · p2jr

r for p distinct primes,k, j ∈ N, andp1 ≡ k ≡ 1 mod4.

Exercise 1.4.2.Note this impliesN ≡ 1 mod4.

Proof.

N = pe1
1 pe2

2 · · · per
r . (1.10)

N perfect if and only ifσ(N) = 2N . Since the numbers are mutually prime,
we obtain

r∏
i=1

σ(pei
i ) = 2N. (1.11)

Soσ(N) ≡ 2 mod4, thus at least oneσ-term is even. Iftwowere even, would
have wrong congruence. There is thus a uniquei0 such thatσ(p

ei0
i0

) ≡ 2 mod4.
Without loss of generality, leti0 = 1.

Supposepi ≡ 3 ≡ −1 mod4. Then

σ(pei
i ) = 1 + pi + p2

i + · · ·+ pei
i

≡ 1 + (−1) + (−1)2 + · · ·+ (−1)ei mod4

≡
{

0 mod 4 if ei odd

1 mod 4 if ei even
(1.12)

Sop1 must be1 mod 4, and ifpi ≡ 3 mod 4, ei must be even.
If pi ≡ 1 mod 4, then

σ(pei
i ) ≡

ei∑
0

1

≡ ei + 1 mod4. (1.13)
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Sincep1 ≡ 1 mod 4, we must havee1 ≡ 1 mod 4. Fori > 1, if pi ≡ 1 mod 4,
thenei is even. This is exactly what we needed, namely, all exponents but the first
are even, and the first exponent is1 mod4.

1.5 Touchard

Theorem 1.5.1 (Touchard 1953).If N is an odd perfect number,N must be of
the form12m + 1 or 36m + 9.

We will give Holdener’s proof from 2002.

Lemma 1.5.2.N cannot have the form6m− 1.

Proof. SupposeN = 6m− 1. ThenN ≡ −1 mod3. For any divisord of N , we
have

d · N

d
= N ≡ −1 mod3. (1.14)

So,eitherd ≡ 1 mod 3 andN
d
≡ −1 mod 3or d ≡ −1 mod 3 andN

d
≡ 1 mod

3.
Thus,

σ(N) =
∑
d|N

0<d<
√

N

(
d +

N

d

)
≡ 0 mod 3. (1.15)

However,

σ(N) = 2N

= 2(6m− 1)

= 12m− 2

≡ −2 mod 3

≡ 1 mod 3, (1.16)

and we have a contradiction.
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We now look modulo 6, and prove the theorem.

Proof. By Lemma 1.5.2,N cannot be of the form6m−1. Therefore,N = 6m+1
or 6m+3. Hence,N is congruent to either 1 or 3 mod 6. But from Theorem 1.4.1,
we knowN is congruent to1 mod4. Therefore, eitherN is congruent to 1 mod 4
and mod 6, orN is congruent to 1 mod 4 and 3 mod 6.

Solving these simultaneously yieldsN has the form12m + 1 or 12m + 9.
We’re halfway there, just need to improve the12m + 9 case a bit. AssumeN

is of the form12m + 9 and3 - m. Then

σ(N) = σ (3(4m + 3))

= σ(3)σ(4m + 3)

= 4σ(4m + 3)

≡ 0 mod 4. (1.17)

Therefore, we have a contradiction asσ(N) ≡ 1 mod 4. (Note: we could skip
the above lines by referring to an earlier result).
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Chapter 2

Euler and Geometry: Wednesday,
October 15, 2003

Lecturer: John Christopherson

2.1 Heron’s Formula

Theorem 2.1.1 (Heron).For a triangle ∆ with sides of lengthsa, b and c, the
area of the triangle is

Area(∆) =
√

S(S − a)(S − b)(S − c), (2.1)

whereS is the semi-perimeter

S =
a + b + c

2
. (2.2)

This theorem was known in classical times, and Euler provided new proofs.

Exercise 2.1.2.What about the generalization to a tetrahedron?

Exercise 2.1.3.What about a more general polygon in the plane? Open problem
if there are sufficiently many sides.
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2.2 Geometry Terms

Definition 2.2.1 (Orthocenter). Consider a triangle with verticesA, B andC.
Construct the perpendicular bisectors to each side (the altitudes). The three lines
meet in a common point, called the orthocenter.

Remark 2.2.2.Of course, implicit in the above definition is that the three altitudes
domeet in a point.

Definition 2.2.3 (Centroid). Intersection of the three medians (lines from vertex
to midpoint of opposite side.

Definition 2.2.4 (Circumcenter). The Circumcenter is the center of the circle
which passes through the three vertices of the triangle.

Definition 2.2.5 (Incenter). The Incenter is the center of the circle which is tan-
gent to the three sides.

Remark 2.2.6. Take midpoints of three sides, gives us six vectors, two eminating
from each vertex. Replace every two vectors at a vertex by their sum (the resultant)
going from vertex to opposite side. No rotation, must meet at a point. Assume have
a balanced triangle, homogenous material, balancing on a point. Can replace
forces with sums. If don’t sum to zero, have a net force.

2.3 Euler’s Line

Theorem 2.3.1 (Euler’s Line).The centroid, orthocenter, and circumcenter meet
in a point.

Euler’s line has a lot of significance.Triangle Centers and Central Triangles
indexes a lot of points that are important in triangles, and there are manyspecial
points that are also on Euler’s line.

Remark 2.3.2. The Incenter need not be on Euler’s line.

Remark 2.3.3. Euler’s Line does not generalize to Hyperbolic Geometry. See
Euler’s Line in Hyperbolic Geometry, Jeffrey Klus.

Remark 2.3.4. Altitudes of a Tetrahedron and Traceless Quadratic Forms, in the
American Mathematical Monthly (October 2003), by Hans Havlicek and Gunter
Weiβ, talk about generalizations.
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2.4 Euler’s Proof of Euler’s Line

Euler proceeds by brute force, calculating the coordinates of the three special
points.

Without loss of generality, letA be at(0, 0), let B lie on thex-axis, and let
C be in the first quadrant; it is an easy exercise to show that any triangle may be
taken in this form.
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2.4.1 Orthocenter
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Let P be the intersection of the altitude toAB, letM be the intersection of the
altitude toBC, and letO be the intersection of the two lines. Let the sides of the
original triangle bea, b andc (side of lengthc is opposite vertexC). Euler uses
the Law of Cosines:

a2 = b2 + c2 − 2bc cos(A)

= b2 + c2 − 2bc
AP

b
, (2.3)

which implies that

AP =
b2 + c2 − a2

2c
. (2.4)

Proceeding similarly, one obtains that

BM =
a2 + c2 − b2

2a
. (2.5)

Let

K =
1

2
AMa, (2.6)

thus

AM =
2K

a
. (2.7)

We have∆AMB ' ∆APO, which yields

OP

AP
=

AM

BM
, (2.8)

or

OP =
AM · AP

BM
. (2.9)

Substituting everything gives

OP =
(b2 + c2 − a2)(a2 + c2 − b2)

8cK
, (2.10)
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which gives the coordinates ofO as

O =

(
b2 + c2 − a2

2c
,
(b2 + c2 − a2)(a2 + c2 − b2)

8cK

)
. (2.11)
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2.4.2 Centroid

As these are the medians, they bisect the line. Let the bisector hitAB atL, let
another hitBC at R, and let the two lines meet atF . Now drop a perpendicular
from F to AB, hitting atP . Drop another perpendicular fromC to AB, hitting at
Q.

Clearly we haveAL = c
2
, and∆LFP ' ∆LFP . This yields

LE

LC
=

LP

LQ
=

1

3
. (2.12)

Therefore, we find

PL =
1

3
QL

=
1

3
(AL− AQ)

=
1

3

(
c

2
− b2 + c2 − a2

2c

)
. (2.13)

Thus,

AP = AL− PL

=
c

2
− 1

3

(
c

2
− b2 + c2 − a2

2c

)

=
3c2 + b2 − a2

bc
. (2.14)
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We find

PF = fotCA =
1

3

2K

c
=

2K

3c
. (2.15)

Or, in other words,

F =

(
3c2 + b2 − a2

bc
,
2K

3c

)
. (2.16)
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2.4.3 Circumcenter

Draw the circle with center at the circumcenterC. Draw the altitude fromA
to BC, and extend till it hits the circle atM . Draw the perpendicular lines from
the circumcenterC to the three sides of the triangle.

We find

DP

AP
=

CM

AM
, (2.17)

where

CM =
a2 + b2 − c2

2a
and AM =

2K

a
. (2.18)

Substituting yields

DP =
c

2
· a2 + b2 − c2

2a
· a

2K
=

c(a2 + b2 − c2

8K
. (2.19)
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We have now found the coordinates ofD:

D =

(
c

2
,
c(a2 + b2 − c2

8K

)
. (2.20)

2.4.4 Completing the proof

Now that we have the three coordinates of the three special points, we compute
and compute and compute.

2.5 A Vector Approach to Euler’s Line

FromA Vector Approach to Euler’s Line of a Triangle, by J. Ferrer.
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Chapter 3

Euler and Infinite Series:
Wednesday, October 22, 2003

Lecturer: Bill Mance.
We’ll mention ζ(2) = π2

6
, as well as some generalizations. The handout

is from An Introduction to the Theory of Numbers(I. Niven, H. Zuckerman, H.
Montgomery, fifth edition). Another source isPi: A source Book, by L. Berggren,
J. Borwein, P. Borwein.

3.1 Power Series Review

We have the following power series expansions:

sin x = x− x3

3!
+

x5

5!
− · · ·

cos x = 1− x2

2!
+

x4

4!
− · · · . (3.1)

Theorem 3.1.1 (Viete (1500s)).Letf(x) = xN + cN−1x
N−1 + · · ·+ c0 with roots

α1, . . . , αN . Then
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∑
i

αi = −cN−1

∑
i>j

αiαj = cN−2

...
N∏

i=1

αi = (−1)Nc0. (3.2)

Note: set of algebraic complex numbers is a field.

3.2 Evaluatingζ(2)

We will prove

Theorem 3.2.1 (Euler).
∑

n≥1
1
n2 = π2

6
.

Proof. Define

p(x) = 1− x2

3!
+

x4

5!
− · · · . (3.3)

Note the above equalssin x
x

for all x ∈ C− {0}.
Now, p(x) = 0 if and only if x = kπ, k ∈ Z. Implicit in this assumption is

that there are no complex zeros.
Thus, assume we can writep(x) as an infinite product:

p(x) =
(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
· · · . (3.4)

Remark 3.2.2. It is very importantto take the factors in this order, as the above
is conditionally convergent, and gives a little better decay. This can be formally
justified using Weierstrass products.

Combining in pairs yields

p(x) =

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · ·

= 1− x2

(
1

π2
+

1

22π2
+

1

32π2
+ · · ·

)
+ x4 (· · · ) + · · · . (3.5)
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Equating coefficients, and remembering the expansion ofp(x) = sin x
x

, we find

1

3!
=

1

π2
+

1

22π2
+

1

33π2
+ · · · , (3.6)

which gives

∞∑
n=1

1

n2
=

π2

6
. (3.7)

3.3 Generalizations

Consider a power series

p(z) = 1 + Az + Bz2 + Cz3 + Dz4 + · · · . (3.8)

If the roots ofp(z) areα, β, γ, δ, . . . , then we have

p(z) = (1 + αz)(1 + βz)(1 + γz)(1 + δz) · · ·
A = α + β + γ + δ + · · ·
B =

∑
two at a time

C =
∑

three at a time, (3.9)

and so on. We need certain properties to make all the above convergence (for
example, the roots must have certain size properties).

Define

P = α + β + γ + · · ·
Q = α2 + β2 + γ2 + · · ·

...

V = α6 + β6 + γ6 + · · · . (3.10)

Then
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P = A

Q = AP − 2B

R = AQ−BP + 3C
...

V = AT −BS + CR−DQ + EP −GF. (3.11)

In the finite case, these are due to Newton.
We have

α =
1

π2
, β =

1

22π2
, . . . (3.12)

and

Q =
1

3!

1

3!
− 2 · 1

5!
. (3.13)

Therefore,

1

π4

(
1

14
+

1

24
+ · · ·

)
=

1

90
, (3.14)

which gives

∑
n≥1

1

n4
=

π4

90
. (3.15)

Consider

cos(u/2) + tan(g/2) sin(v/2)

=

(
1 +

v

π − q

)(
1− V

π + q

)(
1 +

v

3π − g

)(
1− v

3π + g

)
(3.16)

Substitutev = x
n
π andg = m

n
π. Then

cos(xπ/2n) + tan(mπ/n) sin(xπ/2n)

=

(
1 +

x

n−m

)(
1− x

n−m

)(
1 +

x

3n−m

)(
1− x

3n−m

)
· · ·(3.17)
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Let K = tan(mπ/n). Then, noting there are noKs in the even terms,

1 +
πx

2n
K − π2x2

22n22!
− π3x3

23N33!
K3 + · · · = other side. (3.18)

Collecting gives

1

n−m
− 1

n + m
+

1

3n−m
− 1

3n + m
+ · · · =

π

2n
K. (3.19)

Similarly

1

(n−m)2
+

1

(n + m)2
+

1

(3n−m)2
+

1

(3n + m)2
+ · · · =

K2 + 1

4N2
π2 (3.20)

and

1

(n−m)3
− 1

(n + m)3
+

1

(3n−m)3
− 1

(3n + m)3
+· · · =

(K3 + K)

8n3
π3. (3.21)

In general, we get something of the formf(k)g(n)πpower, wheref andg are
nice functions. Ifm,n ∈ Z, thenK is algebraic:

K = K
sin(mπ/2n)

cos(mπ/2n)
=

algebraic
algebraic

. (3.22)

Thus, all the above sums are transcendental whenm andn are integers, as
the algebraic numbers are closed under these operations (algebraic numbers are a
field).

3.4 More Rational Multiples of π

Consider

cos(v/2) + cot(g/2) sin(v/2). (3.23)

Making the same substitutions as before,
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1 +
πx

2nK
− π2x2

22N22!
− π3x3

23N33!K
+ · · ·

=
(
1 +

x

m

) (
1− x

2n−m

)(
1 +

x

2n + m

)(
1− x

4n−m

)(
1 +

x

4n + m

)
· · · .

(3.24)

Therefore, as before we get

1

m
− 1

2n−m
+

1

2n + m
+ · · · =

π

2nK
1

m2
+

1

(2n−m)2
+

1

(2n + m)2
+ · · · =

(K2 + 1)π2

4n2K2

1

m3
− 1

(2n−m)3
+

1

(2n + m)3
+ · · · =

(K2 + 1)π4

8n3K3
, (3.25)

and so on.
Takingm = 1, n = 2 givesK = 1, and we get

1

1
− 1

3
+

1

5
− · · · =

π

4
(3.26)

and

1

13
− 1

33
+

1

53
− · · · =

π3

32
. (3.27)

Catalan’s constant is

1

12
− 1

32
+

1

52
− · · · , (3.28)

and we don’t even know if it is irrational, let alone transcendental!
One can show

1

12
− 1

22
+

1

32
− 1

42
+ · · · =

π2

12
. (3.29)

To see this, letS =
∑

n≥1
1
n2 . Then 1

22 S =
∑

n≥1
1

(2n)2
. ThenS − 2 · 1

4
S, and

notingS = π2

6
, solves the above.

Note many of these are a rational number timesπ.
Euler conjectured thatζ(3) = α(log 2)3 +β log 2, with α, β probably rational.

This is no longer believed to be true.
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3.5 Irrational Multiples of π

Continuing as before, letm = 1, n = 3, and use the last relations with these
values. This implies thatK = tan(π/6) = 1√

3
. Therefore, the first relation will

yield

1

2
− 1

4
+

1

8
− 1

10
+ · · · =

π

6
√

3
. (3.30)

Thus, here we have anirrational multiple ofπ, which is a lot harder to detect.

3.6 Adding Series from Both

Adding series from both expansions gives us (the most recent one and the cotan-
gent one) gives

1

m
+

1

n−m
− 1

n + m
− 1

2n−m
+

1

2n + m
+ · · · =

Kπ

2n
+

π

2nπ
. (3.31)

Unfortunately, the above are not absolutely convergent! Now, if you truncate
each series, then one has finitely many terms, and the above can be justified (a
bit).
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Chapter 4

Euler and Sums of Four Squares:
Wednesday, October 29, 2003

Lecturer: Brinkmeier.

4.1 History

Starts with Bachet in 1621. We will show that a prime number is the sum of two
squares if and only ifp = 4k + 1 (Bachet first claimed this).

In 1685, Fermat claims to have a proof of the above, but again, no proof is
given.

In the 1740s, Euler becomes interested in this problem, which he proves in
1747. Then in 1770 Lagrange, using the ideas of Euler, finally shows that any
number can be written as the sum of four squares.

4.2 Sums of Two Squares

Theorem 4.2.1.A primep is the sum of two squares if and only ifp = 4k + 1.

Lemma 4.2.2 (Leonardo of Pisa, 1202).If x andy are sums of two squares, then
so isxy.

Proof. Say

x = a2 + b2 and y = c2 + d2. (4.1)
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Then

(a2 + b2)(c2 + d2) = (ad + bc)2 + (ac− bd)2. (4.2)

Can interpret the above in terms of complex numbers.

We will use the method of infinite descent: if you have one solution, we show
that there is a strictly smaller solution (in some sense); this process cannot be
continued indefinitely with integers.

Lemma 4.2.3.For any primep = 4k + 1, there existm, z ∈ Z such thatmp =
z2 + 1.

Proof. From Wilson’s Theorem, we know(p − 1)! ≡ −1 mod p. Thus, in our
case,(4k)! ≡ −1 modp. Then

2k + 1 ≡ −2k

2k + 2 ≡ −2k − 1
...

4k − 1 ≡ −2

4k ≡ −1. (4.3)

Therefore, we have[(2k)!]2 ≡ −1 modp. In the above calculations, there will
be an even number of minus signs coming out.

Now that we knowmp = z2+1, we can find (straightforward calculation) that
−1

2
p < z < 1

2
p (with possibly a differentm, butz in this range). This implies

m =
z2 + 1

p
<

1
4
p2 + 1

p
< p. (4.4)

For mp = x2 + y2, p = 4k + 1 we can findu andv such thatu ≡ x modm
andv ≡ y modm. We may chooseu andv so that−1

2
m ≤ u, v ≤ 1

2
m.

This impliesu2 + v2 ≡ 0 mod m, which yields that there exists anr such that
mr = u2 + v2. If r 6= 0, thenu = v = 0.

Hence, ifm > 1, there exists anr < m such thatrp = x2+y2, sop = x̃2 + ỹ2.
Note we had
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(mr) · (mp) = (u2 + v2) · (x2 + y2). (4.5)

By Fibonacci’s identity, this is also a sum of two squares, say(xu + yv)2 +
(xv − yu)2. Thus, we getrp = x̃2 + ỹ2.

4.3 The Representation is (basically) Unique

Sayp = a2 + b2 = x2 + y2, and we have that the congruencez2 + 1 ≡ 0 modp
has two solutions, say±h.

Sincep is prime anda, b non-zero,a−1 andb−1 exist (the inverses are multi-
plicative inverses modp). Then, modp,

0 ≡ a2 + b2

≡ a2(b−1)2 + b2(b−1)2

≡ (ab−1)2 + 1

≡ 0. (4.6)

Thus,ab−1 ≡ ±h modp; relabelh if necessary so thata ≡ hb modp.
Now

p2 ≡ (a2 + b2) · (x2 + y2)

≡ (ax + by)2 + (ay − bx)2. (4.7)

Using our result thata ≡ hb modp, we can find a similar statement concerning
x andy, and we find that one of the two factors above is congruent to zero modp.
Let’s assume thatay − bx ≡ 0 modp, or p|(ax + by).

Dividing by p2 above (be very careful doing such divisions modp), we find

1 ≡
[
ax + by

p
+

ay − bx

p

]2

. (4.8)

Supposeax + by = 0. As a andb are relatively prime (as their squares sum
to the primep), we finda dividesby, soa dividesy. Similarly, one can find that
b dividesx, and we can interchange the rolls of(a, b) and(x, y). We find that the
only solutions are of the form(±x,±y) or (±y,±x).
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Exercise 4.3.1.Show that we are correct above when we state thatay − bx ≡ 0
modp.

4.4 Sums of Four Squares

We have seen that primes of the form4k + 3 cannot be the sum of two squares
(look at what squares are congruent to mod4).

Exercise 4.4.1.Show that7 and15 cannot be written as the sum of three squares.

So, three squares is not enough to get all numbers. In 1750, Euler discovered
the following identity

(a2
1 + a2

2 + a2
3 + a2

4)(b
2
1 + b2

2 + b2
3 + b2

4)

= (a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b2)

2

+ (a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2.(4.9)

Thus, ifx andy are the sum of four squares, so is their product!

Remark 4.4.2. Modern day proofs of this use
(

z w
w z

)
. (4.10)

The determinant above is the sum of four squares....

Noting that2 = 12 + 12 + 02 + 02 and primesp of the form4k + 1 can be
written a2 + b2 + 02 + 0, we see it is sufficient to write odd primes of the form
4k + 3 as the sum of four squares.

So, we must show that there exists anm such that0 < m < p andmp =
a2 + b2 + c2 + d2. We will do this by descent. To show such anm exists, it is
enough to show thatx2 + y2 + 1 ≡ 0 mod p is solvable.

We rewrite asx2 + 1 ≡ −y2 modp. Clearly, modp, y2 is a perfect square. As
p ≡ −1 mod4,−1 is not a perfect square (this follows from(−1)

(4k+3)−1
2 ≡ −1.

We introduce the Legendre symbol
(

a
p

)
. If a ≡ 0 modp,

(
a
p

)
= 0. Otherwise,

we have

(
a

p

)
=

{
−1 if a is not a square modp

+1 if a is a non-zero square modp
(4.11)
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We find
(

a
p

)(
b
p

)
=

(
ab
p

)
.

Thus, rewritingx2 + y2 + 1 ≡ 0 mod p givesx2 + 1 ≡ (−1)(y2) mod p,
implying thatx2 + 1 is not a square modp.

So, x2 + 1 cannot be a square. so, we want to find a perfect square which,
when we add 1, is not a square. Look at the list of numbers 1, 2, 3, and so on. At
least one such number will work. There are onlyp−1

2
squares, the same number

of non-squares, and 0.
We find

mp = a2 + b2 + c2 + d2, m < p. (4.12)

Let A ≡ a mod m, B ≡ b mod m, C ≡ c mod m, andD ≡ d mod m. We
may take−1

2
m ≤ A,B, C, D ≤ 1

2
m. So there exists anr such that

mr = A2 + B2 + C2 + D2. (4.13)

If r = 0, each is0, sop is divisible bym, which contradicts the primality of
p. Thus,r > 0. Therefore

r =
A2 + B2 + C2 + D2

m

≤
1
4
m2 + 1

4
m2 + 1

4
m2 + 1

4
m2

m
= m. (4.14)

If r = m, then all these terms have to achieve a maximum of1
2
m, which

implies thata = b = c = d = 1
2
m modm. Thus,mp = 0 modm2, sor < m.

We have

mr = A2 + B2 + C2 + D2

mp = a2 + b2 + c2 + d2. (4.15)

Multiplying out (using a slightly different version of Euler’s identity for sums
of four squares) gives

m2pr = w2 + x2 + y2 + z2 (4.16)

where
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w = aA + bB + cC + dD ≡ a2 + b2 + c2 + d2 ≡ 0 mod m. (4.17)

Likewise, we findx, y, z ≡ 0 mod m. Thus,

pr = w̃2 + x̃2 + ỹ2 + z̃2. (4.18)

The descent is following in this form: we are probably assumingm > 1, and
if m > 1, then we can find a smallerr.

4.5 Later Years

Waring (1770) conjectured that everyn is the sum of9 cubes. Wieferich and
Kempner (1912) proved that Waring’s conjecture is true. Hilbert (1909) states
that for anyN , there is a natural numberg(N) such that everyn is the sum of at
mostg(N) N th powers:n =

∑g(N)
i=1 xN

i . Chen (1986) showed thatg(5) = 37, and
others in1986 showed thatg(4) = 19.

For 9 cubes, 257 is the largest number that needs 9 cubes. A natural problem
is from some finite point on, how many terms does one need for eachN? For
example,g(4) is 16 (give or take).

Exercise 4.5.1.Is every positive integer the sum of a finite number of squares?

Exercise 4.5.2.Same as above, but can one show that bounded number of squares
work?
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Chapter 5

Euler and Graph Theory: Friday,
November 5, 2003

Lecturer: Corey

5.1 Graph Theory Review

A graphG = (V, E) is a set of verticesV (the vertex set) and a setE of pairings
of vertices.

If v ∈ V , the degree ofv is the number of edges leavingv.
If v ∈ V , thene is incident tov. If v is in two edgese1 ande2, thene1 is

adjacent toe2.
A pathP in G is a sequences of edges{ei}i≤n such thatei is adjacent toei+1.
The vertex sequence ofP is the sequence{vi} such thatei is incident tovi.
If i 6= j impliesei 6= ej, then the pathP is simple.
If vn = v1 (the last vertex is the same as the first), thenP is closed.
If P is simple and closed, thenP is a circuit.

5.2 Bridges of Koenigsberg

Question: can you walk around town, crossing each bridge exactly once, ending
up where you started?

Two islands in a river,[ ] − − − −[ ], river flows around the two islands,
two bridges from each side of the first island to the opposite shores; on the second
island, one bridge from each side to the other banks.
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Gives rise to a graph: four vertices, say 1, 2, 3, 4.
An Euler Circuit is a closed path inG (the graph) that uses each edge exactly

once.

Theorem 5.2.1.If an Euler Circuit exists inG, then all vertices have even degree.

Proof. Start at a vertex in the Euler Circuit: every time you come to another
vertex, you contribute two (once coming in, once leaving). In the end, when you
have the last edge, since it is a closed path, you end up at the original vertex, which
now gives everything having an even degree.

Theorem 5.2.2 (Euler). If G has all even degree vertices, then there exists an
Eulerian Circuit.

Proof. We proceed by induction on the number of vertices. Assume you have at
least two vertices (otherwise trivial). The case of two vertices is trivial.

We proceed by strong induction. Takeanypath such that you end back where
you started. Such a path exists as all vertices have even degree. Start at av1

and walk. Every time you hit a new vertex, you leave it; thus, you decrease
their degrees by an even number each time. Eventually, as there are only finitely
many vertices, you must return to where you started. Why? Each vertex has even
degree, so when you come in and leave, you decrease its degree by 2. If you
haven’t returned yet, then this vertex is no longer available if you’ve used up all
its edges. As we keep decreasing the number of edges, eventually it will work.

Then, by strong induction, we can find Euler Circuits for each connected com-
ponent ofG minus the path we’ve just constructed. Then we just piece those
pieces to the original path.

Remark 5.2.3. We count a self-loop as two edges; a self-loop is an edge fromv
to v.

5.3 Fleury’s Algorithm

We describe Fleury’s Algorithm to construct an Eulerian Circuit. The input is a
finite connected graphG with all vertices of even degree.

Step One:Start at any vertexv. Let V S = {v}, andES the empty sequence;
V S stands for the Vertex Set,ES stands for the Edge Set.

Step Two: While there are edges incident withv:
If there is no edge incident withv, stop.
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If there is exactly one edge, saye = {v, w}. Add the edgee to ES, addw to
V S, deletev from the graph, and now move on and considerw.

If there is more than one, choose one edge such that its removal does not
disconnect what is left; we claim that there is always such an edge.

5.4 Euler Characteristic

Definition 5.4.1. A polyhedron is a three-dimensional figure whose faces are poly-
gons, fitting together well.

Definition 5.4.2. A polygon is a simple closed curve with straight sides, non-
intersecting, divides the plane into two sets.

We often want to deal with convex figures. For example, we’ll deal with a
polyhedron as the convex hull of a set of points in the plane.

Let F be the number of faces of the polyhedron, letE be the number of edges,
and letV be the number of vertices.

Theorem 5.4.3 (Euler).For any convex polyhedron,

F − E + V = 2. (5.1)

This was known to Descartes (1639); Euler rediscovered this (1751). We give
Cauchy’s proof (1811).

Proof. Take a face-off. We haven’t removed any edges or vertices – we’ve just
removed the interior of a polygon. There is now a whole, and we have something
topologically equivalent to a cell. We’ve decreasedF by 1, and everything else
unchanged.

We now flatten everything out, and triangulate. Now that we have something
flat, we just need to showF − E + V = 1. Then start removing triangles and
boundaries. See what happens in each case.

Consider polyhedra with regular faces, and the same number of edges meeting
at each vertex. Leta be the number of edges on each face, letb be the number of
edges meeting at each vertex. On findsaF = 2E, andbV = 2E. AsF−E+V =
2, a little algebra yields

1

a
− 1

2
+

1

b
=

1

E
. (5.2)

There are only so many answers: the five answers are the Platonic solids.
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Chapter 6

Wednesday, November 12, 2003

Lecturer: Dan File

6.1 History of the Fundamental Theorem of Alge-
bra

First was d’Alembert (1746) – he was interested in integrating rational function.
A consequence of the FToA is that any polynomial can be separated into linear
and quadratic terms, so to integratef(x)

g(x)
, we can succeed using partial fractions.

Euler became interested in this problem: Euler worked on the quartic and
quintic. For the quartic, Euler showed that there was an x-intercept. He was
relying on the fact that if you have rootsβi (i ∈ {1, 2, 3, 4}), then−(β1 · · · β4)

2

is negative. This is fine if theβs are real or in complex conjugate pairs, but had
some trouble with the quntic.

Nicolas Bernouli claimed a certain quartic was irreducible overR, but Euler
found a factorization:

x4−4x3 +2x2 +4x+4 = (x2−
√

2±
√

4 + 2
√

7)x+(1±
√

4 + 2
√

7+
√

7)),

(6.1)
where above the two factors come from taking the+ sign each time, or the−

sign each time. Note factoring a quartic into two real quadratics is different than
trying to find four complex roots.

A function f is analytic on an open subsetR ⊂ C if f is complex differen-
tiable everywhere onR; f is entire if it is analytic on all ofC.
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6.2 Proof of the Fundamental Theorem via Liou-
ville

Theorem 6.2.1 (Liouville). If f(z) is analytic and bounded in the complex plane,
thenf(z) is constant.

We now prove

Theorem 6.2.2 (Fundamental Theorem of Algebra).Let p(z) be a polynomial
with complex coefficients of degreen. Thenp(z) hasn roots.

Proof. It is sufficient to show anyp(z) has one root, for by division we can then
write p(z) = (z − z0)g(z), with g of lower degree.

Note that if

p(z) = anzn + an−1z
n−1 + · · ·+ a0, (6.2)

then as|z| → ∞, |p(z)| → ∞. This follows as

p(z) = zn ·
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ . (6.3)

Assumep(z) is non-zero everywhere. Then look at1
p(z)

, with |z| = R. Since

P (z) 6= 0 for all z, we find 1
p(z)

is bounded (look at|z| small and large separately).

Thus, 1
p(z)

is a bounded, entire function, which must be constant. Thus,p(z) is
constant, a contradiction which impliesp(z) must have a zero (our assumption).

6.3 Proof of the Fundamental Theorem via Rouche

Theorem 6.3.1 (Rouche).If f andh are each analytic functions inside and on a
domainC with bounding curve∂C, and|h(z)| < |f(z)| on∂C, thenf andf + h
have the same number of zeros inC.

We now prove the Fundamental Theorem of Algebra:

Proof. Let
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p(z) = anzn + an−1z
n−1 + · · ·+ a0

f(z) = anzn

h(z) = an−1z
n−1 + · · ·+ a0. (6.4)

Take

R >
|an−1|+ · · ·+ |a0|

|an| . (6.5)

Then |h(z)| < |f(z)| on the boundary of the circle centered at the origin of
radiusR. As clearlyf hasn zeros, we are done.

6.4 Proof of the Fundamental Theorem via Picard’s
Theorem

This proof is due to Boas (1935).

Theorem 6.4.1.If there are two points missed in the image of an entire function
p(z) (ie,∃z1 6= z2 such that for allz ∈ C, p(z) 6= z1 or z2), thenp(z) is constant.

We now prove the Fundamental Theorem of Algebra:
Let p(z) be a non-constant polynomial missing two points. Without loss of

generality, we may assumep(z) is never0.

Claim 6.4.2. If p(z) is as above,p(z) does not take on one of the values1
k

for
k ∈ N.

Proof. Assume not; thus,∃zk ∈ C such thatp(zk) = 1
k
. If we take a circle

centered at the origin with sufficiently large radius, then|P (z)| > 1 for all z
outside some circleD. Thus, eachzi ∈ D. By Bolzano-Weierstrasss, as all the
pointszk ∈ D, we have a convergent subsequence. Thus, we havezni

→ z′. But

p(z′) = lim
ni→∞

p(zni
) = 0. (6.6)

Thus, there must be somek such thatp(z) 6= 1
k
. As p(z) misses two values,

by Picard it is now constant. This contradicts our assumption thatp(z) is non-
constant. Therefore,p(z0) = 0 for somez0.
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Remark 6.4.3. One can use a finite or countable version of Picard. Rather than
missing just two points, we can modify the above to work if Picard instead stated
that if we miss finitely many (or even countably many) points, we are constant.
Just look at the method above, gives1

k1
. We can then find another larger one,

say 1
k2

. And so on. We can even get uncountably many such points by looking at
numbers such asπ

k
(using now the transcendence ofC is 1).

6.5 Proof of the Fundamental Theorem via Cauchy’s
Integral Theorem

This proof is due to Boas (1964).

Theorem 6.5.1 (Cauchy Integral Theorem).Let f(z) be analytic inside on on
the boundary of some regionC. Then

∫

∂C

f(z)dz = 0. (6.7)

We now prove the Fundamental Theorem of Algebra:

Proof. Let p(z) be a non-constant polynomial and assumep(z) = 0. For z ∈ R,
assumep(z) ∈ R; in other words, we are assumingp(z) has real coefficients.

Without loss of generality,p(z) doesn’t change signs forz ∈ R, or by the
Intermediate Value Theorem it would have a zero.

∫ 2π

0

dθ

p(2 cos θ)
= 6= 0. (6.8)

This follows from our assumption thatp(z) is of constant sign for real argu-
ments, bounded above from0. We also have

1

i

∫

|z|=1

dz

zp(z + z−1)
=

1

i

∫

|z|=1

zn−1

Q(z)
, (6.9)

where

Q(z) = znP (z + z−1). (6.10)

If z 6= 0, Q(z) 6= 0.
If z = 0, then
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p(z + z−1) = an(z + z−1)n + · · ·
znp(z + z−1) = zn

(· · · anz−n
)

+ · · ·
= an + z(· · · ). (6.11)

Thus,Q(z) = an, which is non-zero.

Remark 6.5.2.If p(z) doesn’t have real coefficients, then considerg(z) = p(z)p(z).
By differentiating, one can pick off the coefficients.

6.6 Proof of the Fundamental Theorem via Maxi-
mum Modulus Principle

This proof is due to C. Fefferman (1967).

Theorem 6.6.1 (Maximum (Minimum) Modulus Principle). No entire function
attains its maximum in the interior.

We now prove the Fundamental Theorem of Algebra:

Proof. Assumep(z) is non-constant and never zero.∃M such that|p(z)| ≥ |a0| 6=
0 if |z| > M . Let z0 be the value in the circle of radiusM wherep(z) takes its
minimum value. All we are using is a continuous function on a closed, bounded
domain attains its maximum (minimum).

But |p(z0)| ≤ |p(0)| = |a0|. Therefore,|p(z0)| ≤ |p(z)| for all z ∈ C.
Translate the polynomial. Letp(z) = p((z − z0) + z0); let p(z) = Q(z − z0).

Note the minimum ofQ occurs atz = 0: |Q(0)| ≤ |Q(z)| for all z ∈ C.

Q(z) = c0 + cjz
j + · · ·+ cnzn, (6.12)

wherej is such thatcj is the first coefficient (afterc0) that is non-zero. Note if
c0 = 0, we are done.

We may rewrite such that

Q(z) = c0 + cjz
j + zj+1R(z). (6.13)

We will extract roots. Let
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reiθ = −c0

cj

. (6.14)

Further, let

z1 = r
1
j e

iθ
j . (6.15)

Let ε > 0 be a small real number. Then

Q(εz1) = c0 + cjε
jzj

1 + εj+1zj+1
1 R(εz1)

|Q(εz1)| ≤ |c0 + cjε
jzj

j |+ εj+1|z1|j+1|R(εz1)|
|c0| − εj|c0|+ εj+1|z1|j+1N, (6.16)

whereN is chosen such thatN > |R(εz1)|. Thus,

|Q(εz1)| < |c0|, (6.17)

but this was supposed to be our minimum. Thus, a contradiction!

6.7 Proof of the Fundamental Theorem via Radius
of Convergence

The proof below is from Velleman (1997).
We now prove the Fundamental Theorem of Algebra: As always,p(z) is a

non-constant polynomial. Consider

f(z) =
1

p(z)
= b0 + b1z + · · · , (6.18)

and

p(z) = anz
n + · · ·+ a0, a0 6= 0. (6.19)

Lemma 6.7.1.∃c, r ∈ C such that|bk| > crk for infinitely manyk.

Now, 1 = p(z)f(z). Thus,a0b0 = 1. This is our basis step. Assume we
have some coefficient such that|bk| > crk. We claim we can always find another.
Suppose there are no more. Then the coefficient ofzk+n in p(z)f(z) is
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a0bk+n + a1bk+n−1 + · · ·+ anbk = 0. (6.20)

Thus, as we have|bj| > crj in this range, we have the coefficient satisfies

|a0|rn + |a1|rn−1 + · · ·+ |an−1|r ≤ |an| (6.21)

if

r ≤ min{1, |an|
|a0|+ · · ·+ |an−1| . (6.22)

This will give that

|bk| =
|a0bk+n + · · ·+ an−1bk+1|

|an|
≤ |a0bk+n|+ · · ·+ |an−1bk+1|

|an| ≤ crk (6.23)

for sufficiently small.
Let z = 1

r
. Then

∣∣bkz
k
∣∣ =

|bk|
rk

> c. (6.24)
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Chapter 7

Wednesday, November 19, 2003

Lecturer: Rafal Pikula

7.1 An Interesting Sum

Theorem 7.1.1. ∑
m,n≥2

1

mn − 1
= 1. (7.1)

Proof. Let

x = 1 +
1

2
+

1

3
+

1

4
+ · · · (7.2)

By the Geometric Series Formula,

1 =
1

2
+

1

4
+

1

8
+ · · · (7.3)

Therefore, subtracting yields

x− 1 = 1 +
1

3
+

1

5
+

1

6
+

1

7
+

1

9
+ · · · (7.4)

Similarly, we know

1

2
=

1

3
+

1

9
+

1

27
+ · · · (7.5)

Subtracting again gives
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x− 1− 1

2
= 1 +

1

5
+

1

6
+

1

7
+

1

10
+ · · · (7.6)

Again by the Geometric Series,

1

4
=

1

5
+

1

25
+

1

125
+ · · · (7.7)

Subtracting again gives

x− 1− 1

2
− 1

2
= 1 +

1

6
+

1

7
+

1

10
+ · · · (7.8)

Continuing in this manner gives

x− 1− 1

2
− 1

5
− 1

6
− 1

9
− · · · = 1. (7.9)

This implies

x− 1 = 1 +
1

2
+

1

2
+

1

5
+

1

6
+

1

9
+ · · · (7.10)

Note the RHS’s denominators are all numbers with denominatorsnot of the
form mn−1 with m,n ≥ 2. Subtractingx−1 (Equation 7.10) from the expansion
of x gives

1 =
1

3
+

1

7
+

1

8
+

1

15
+ · · · (7.11)

Of course, we are subtracting divergent series....

Remark 7.1.2.You need to be careful in trying to add convergent factors, to make
the series convergent.

7.2 Summation Methods

Consider

∞∑
n=0

an. (7.12)

We can consider the Power Series Method: Assume
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∞∑
n=0

anxn (7.13)

converges for small|x|; assume for suchx, the above converges tof(x). If
the function is regular in the region (open, connected) that contains the origin and
the pointx = 1, then we define

∞∑
n=0

an = f(1). (7.14)

We call convergence of sums of this typeE-convergence.
Another type of summation is to again consider the power series

∑
anx

n. Let
x = y

1−y
, soy = x

x+1
. Notey = 1

2
corresponds tox = 1.

Assume
∑

anx
n converges for small|x|. Then

xf(x) =
∞∑

n=0

anx
n+1

=
∞∑

n=0

an
yn+1

(1− y)n+1

=
∞∑

n=0

an

∞∑
m=0

(
n + m

m

)
yn+m+1

=
∞∑

n=0

an

∞∑

k=n

(
k

k − n

)
yk+1

=
∞∑

k=0

yk+1

k∑
n=0

(
k

k − n

)
an

=
∞∑

k=0

bky
k+1, bk =

k∑
n=0

(
k

n

)
an. (7.15)

If the above converges fory = 1
2
, say toh(y), then we define

∞∑
n=0

an = h

(
1

2

)
. (7.16)

We call this(E, 1)-summation. To evaluate aty = 1
2
, we must study
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∞∑
n=0

bn

2n+1
. (7.17)

7.3 Examples

1− 1 + 1− 1 + 1− 1 + · · · (7.18)

UsingE-Summation:

∞∑
n=0

(−1)nxn =
1

1 + x
. (7.19)

Thus, asf(1) = 1
2
, we obtain

∞∑
n=0

(−1)nxn =
1

2
. (7.20)

Now let us use(E, 1)-Summation. We need to determinebn. We find b0 =
a0 = 1, and

bn =
n∑

k=0

(
n

k

)
(−1)k = 0 if n ≥ 1. (7.21)

Therefore,

∞∑
n=0

bn

2n+1
=

1

2
. (7.22)

Let’s consider

1− 2 + 4− 8 + · · · (7.23)

By E-summation,

∞∑
n=0

(−1)n(2x)n =
1

1 + 2x
. (7.24)

As f(1) = 1
3
, we get this sum is1

3
.
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Using(E, 1)-summation, we getb0 = a0 = 1, b1 = −1, and in general

bn =
n∑

k=0

(
n

k

)
(−2)k = (1− 2)n = (−1)n. (7.25)

Thus,

1− 2 + 4− 8 + · · · =
∞∑

n=0

(−1)n

2n+1
=

1

3
, (7.26)

as we have a geometric series.

7.4 Another Example

Consider

1 + 2 + 4 + 8 + · · · (7.27)

By E-Summation, we get

∞∑
n=0

2nxn =
1

1− 2
. (7.28)

Thus, asf(1) = −1, our initial sum is−1.
Using(E, 1)-Summation, we get

bn =
n∑

k=0

(
n

k

)
2k = 3n. (7.29)

Thus,

∞∑
n=0

bn

2n+1
=

1

2

∞∑
n=0

(
3

2

)n

= ∞. (7.30)

Remark 7.4.1. In the above, if we useE-Summation to handle the
(

3
2

)n
, we get

−2, which regains the−1 from before.

Let’s try using(E, 1)-Summation on
(

3
2

)n
. We now get
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cn =
n∑

k=0

(
n

k

)
3k

2k+1
=

1

2

(
5

2

)n

. (7.31)

We then substitute, and get
∑

cn

2n+1 , and see we have things like
(

5
4

)n
. If we

apply the Geometric Series now, we get−1 again.

7.5 Related Sums and Values

Consider

a0 + a1 + a2 + a3 + · · ·+ (7.32)

and

a0 + 0 + 0 + a2 + 0 + 0 + 0 + a3 + · · · (7.33)

While this will not change the value of the sum if it converges, if we are using
the new convergence methods on divergent series, we will get new results.

Specifically, consider

1− 1 + 1− 1 + · · · (7.34)

We showed the above is1
2
. Now look at

1− 1 + 0 + 0 + 1− 1 + 0 + 0 + 1− 1 + 0 + 0 + · · · (7.35)

Now we have something like

1− x + x4 − x5 + x8 − x9 + · · · (7.36)

which gives

(1− x)(1 + x4 + x8 + · · · ) =
1− x

1− x4
=

1

(1 + x)(1 + x2)
= f1(x). (7.37)

As f1(1) = 1
4
, we’ve obtained a new value!
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7.6 Another Example

1− 1! + 2!− 3! + · · · (7.38)

Let

f(x) = 1− 1!x + 2!x2 − 3!x3 + · · · (7.39)

Thenf(1) is the value of our original sum. Letg(x) = xf(x). We have

g′(x) = f(x)− xf ′(x)

= 1− 2!x + 3!x2 − 4!x3 + · · · (7.40)

Consider the combination

x2g′(x) + g(x) = x2(1− 2!x + 3!x2 − · · · ) + x− x2(1!− 2!x + 3!x2 − · · · )
= x. (7.41)

This gives the differential equation

x2g′(x) + g(x) = x. (7.42)

We have

(
g(x)e−1/x

)′
=

1

x
· e−1/x, (7.43)

which yields

g(x) = e1/x

∫ x

0

e−1/t

t
dt. (7.44)

The integral is well-defined forx positive. We have

f(x) =
g(x)

x
=

e1/x

x

∫ x

0

e−1/t

t
dt. (7.45)

Substitute byt = x
1+xw

. This yields

51



f(x) =

∫ ∞

0

e−w

1 + xw
dw. (7.46)

Let u = 1
t
, sot = 1

u
. We now have

∫ ∞

1/x

e−u

u
du =

∫ ∞

1

e−udu

u
−

∫ 1

0

(1− e−u)du

u
−

∫ 1/x

1

du

u
+

∫ 1/x

0

(1− e−u)dy

u
.

= −γ − log
1

x
+

∞∑
n=1

(−1)n−1

(
1

x

)n

· 1

n · n!
. (7.47)

Therefore,

f(1) = e ·
(
−γ +

∞∑
n=1

(−1)n

n · n!

)
≈ .596347. (7.48)

7.7 Cesaro Summation

Lecturer: Steven Miller
Let us consider the partial sums of a series:

sn =
n∑

k=1

an. (7.49)

Then we define Cesaro Summation by

lim
n→∞

s1 + · · ·+ sn

n
. (7.50)

Note for

1− 1 + 1− 1 + 1− 1 + · · · (7.51)

we haves2k = 0 ands2k+1 = 1. Thus, the average of the partial sums is1
2

if
n = 2k, and1

2
+ 1

n
if n = 2k + 1. Therefore, we see again that this series sums to

1
2
.
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7.8 A Nice Integral From Euler

∫ 1

0

x−xdx =
∞∑

n=1

n−n. (7.52)
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Chapter 8

Wednesday, December 3, 2003

Lecturer: Ari

8.1 Euler and Mechanics

Euler is often attributed as the first to solve a differential equation. He used dots
for time derivative (a la Newton’s Fluxon Notation). Uses very modern looking
notation. He proceeds through a treatise of Mechanics (vibrations of strings, for
example).

See Euler,Mechanica sure Matus Scientia Analytice

8.2 Preliminaries

A body B is a collection of pointsX = (x1, x2, x3); we will assume the body is
smooth (a smooth manifold) which can be embedded in Euclidean3-Space.

Newton did mechanics through points: his notation and framework didn’t gen-
eralize well. Euler’s work put mechanics on a solid foundation, and increased the
complexity of systems that could be mathematically handled.

LetE1, E2, E3 be a basis. We will have a reference configuration at timet = 0:
call thisB0.

A motion of the body is a mapφt : B0 → Bt such thatx(t) = φt(X) =
φ(X, t). If we had two pointsX1, X2 ∈ B0, we would havex1(t), x2(t). We
assume these motions are invertible; thus,X = φ−1(x, t).
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8.3 Lagrangian Formulation

Lagrange invented the Calculus of Variations – Euler was independently working
on the subject, but held off on publishing so that this young man from Turan could
get his name out. Lagrange also wrote a beautiful appendix to Euler’s Algebra.

Lagrange’s description of mechanics is as follows: start with a reference coor-
dinate system. We’ll have pointsX evolving to pointsφ(X, t). We get velocities
v(X, t) = ∂φ(X,t)

∂t
.

For the Eulerian formulation, we havev(X, t) = v̂(φ(X, t), t) = ṽ(x, t).
Thus, all of these equal∂φ(x,t)

∂t
.

A present configuration basis{ei}, i = 1 to 3. We are suppressing the sub-
script t. We adopt Einstein’s summation convention, which states any repeated
subscript is summed over. Thus,x =

∑
i xiei = xiei.

8.4 Euler’s Theorem on Rotations about a Point

From Whittaker (1927, possibly Analytical Mechanics)

Theorem 8.4.1.Any rotation about a point is equivalently a rotation about a line
through that point (in three dimensions).

Consider a rigid body in an initial configurationB0. There is a point in this
body, X, such that, whenB0 → Bt, x is fixed by this motion. Or, for allt,
x = φt(X) = X. For a rigid body, the distance between any two points inB0 is
equal to the distance between what they are mapped to inBt.

Thus, a rotation about a point holds a point fixed; a rotation about a line holds
a line fixed. We look at two snapshots: look at two times, sayt0 andt1. Then if
we look at two snapshots such that it is a rotation about a point, one can also show
that it is a rotation about a line.

Proof. Let X be a point in the body fixed by the rotation, letX1 andX2 be two
fixed points in the body. This is all at time0.

At time t, we now have pointsX ′, X ′
1, X

′
2. As X is the fixed point,X ′ = X.

Consider the plane that is perpendicular to the plane containingXX1 andXX ′
1

and bisects the angleX ′
1XX1. Similarly for X,X2, X3.

There should be a unique line of intersection of the two planes. LetC be on
that line. So the angleCXX1 equalsCXX ′

1, and the angleCXX2 equalsCXX ′
2.

This follows from the definition ofC, as it lies in both planes which bisect.
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Look at the four pointsC,X1, X2, X. Rotate these points aboutX. We know
X1 andX2 go intoX ′

1 andX ′
2 respectively. Then the lineXC must be mapped

into itself, and this gives us an entire fixed line.
If the two planes are co-incident, it is trivially modified.

If we let t0 approach zero, this line becomes the infinitesimal axis of rotation.
This is useful in many applications.

Remark 8.4.2. We can prove this using a more modern formulation. Since rigid,
all distances remain the same. Thus,φt can be extended to an isometry of three
dimensional space. Thus, the whole space rotates with this motion. Thus, it
should be an element ofSO(3), the group of three dimensional rotations. Thus,
φt0 ∈ SO(3). We just need the simple result that such a matrix has1 as an eigen-
value, which gives us a line of symmetry. This follows from the eigenvalues occur
in complex conjugate pairs, and are of modulus one. Thus, either all eigenval-
ues are real (and since the determinant is 1, at least one eigenvalue is 1)or two
eigenvalues are modulus one complex conjugates, and the third is 1.

8.5 Co-Rotating Coordinates

Euler introduces three anglesφ, θ, ψ. We will have rotations of each of these
angles, and consider

ei = Q(φ)Q(θ)Q(ψ)Ei = QEi. (8.1)

These are called the Eulerian angles, and are given explicitly as follows. We
represent these rotations with respect to the fixedEi basis. Let

Q(ψ) =




cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


 . (8.2)

This is a rotation aboutE3 by an angleψ. This gives

e′1 = cos ψE1 + sin ψE2

e′2 = cos ψE2 − sin ψE1

e′3 = E3. (8.3)
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Now we look atQ(θ), and we represent it with respect to the{e′i} basis. In
this basis, it is a rotation aboute′2, and we find

Q(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 . (8.4)

This yields

e′′1 = cos θe′1 − sin θe′3
e′′2 = e′2
e′′3 = cos θe′3 + sin θe′1. (8.5)

Now we considerQ(φ), written in the{e′′} basis. We now rotate aboute′′1. We
have

Q(φ) =




1 0 0
0 cos φ − sin φ
0 sin φ cos φ


 . (8.6)

Expanding we obtain

e1 = e′′1
e2 = cos φe′′2 − sin φe′′3
e3 = cos φe′′3 − sin φe′′2. (8.7)

Composing all the rotations, we find thate1, e2, e3 are related toE1, E2, E3 by

Q(θ, φ, ψ) =




cos θ cos ψ cos θ sin ψ − sin θ
sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ
cos φ sin θ cos ψ − sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ


 .

(8.8)
Specifically,




e1

e2

e3


 = Q(θ, φ, ψ)




E1

E2

E3


 . (8.9)
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Angular velocity isw = φ̇e′′1 + θ̇e′2 + ψ̇E3. This leads to




ω1

ω2

ω3


 =




− sin θ 0 1
cos θ sin φ cos φ 0
cos θ cos φ − sin φ 0







ψ̇

θ̇

φ̇


 . (8.10)
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Chapter 9

Euler and Fountains: Thursday,
January 15

Lecturer: Seth Hulett

Historical and social note of Euler. Books says he’s the master of us all (master
of physics), Euler has been called in many circles a second rate physicist. Will go
from an articleEuler and Fountains of Sanssouciby Michael Eckert.

Some of the examples used against Euler: didn’t take into account friction
in dealing with some fountains. Euler was part of the project for a few years;
during the entire rain of King Frederick, the fountains were never successful. It
wasn’t till later (steam engines and metal pipes) that it worked. Steam engines
were originally proposed, but the king didn’t want to spend the money on steam
engines. Also, they used wooden pipes rather than iron pipes.

Before Euler, pipes burst at bottom. Wasn’t till one trial run before Euler was
involved: hollowed out trees and coated with metal on the outside. Then didn’t
burst on the bottom.

Still led to many physicists making claims such as "Euler didn’t know conser-
vation of energy" or "Euler’s theories on fluids didn’t lead to practical answers."

This paper explores whether or not Euler’s knowledge was sufficient to build
a system that would work. Eckert looked into the history. In WWII, much of the
history of the building was lost, but he was able to reconstruct some of the history.
Euler wasn’t involved until after the fountains were somewhat successful, after a
great flood of rain.

Have a river that flows, have a castle with fountains. Castle is on a higher
ground. Had to raise the water to the level of the castle. Wanted the water to drop
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100 feet at the castle. The river is not next to the castle – built a windmill to pump
the water up. This failed (only one was somewhat successful right before Euler).

One semi-successful day: lots of rain, helped fill the reservoir up at the castle!
Worked for half an hour or an hour. Pipes brought water up the mountain to the
castle, about 150 feet.

King wanted grandiose fountains (to be better than Versailles) but wasn’t will-
ing to spend the right amount of money. Euler never brought up the cost factor.
Euler might have assumed the pipes are built out of metal (lead), so they wouldn’t
burst.

Other great fountains of the era used metal pipes and not wooden pipes. Why
are these historians of science saying Euler was a second rate physicist?

During Euler’s communication, he described what he thought the pipes should
be. In the article, on page 458, is a depiction of the system.

Euler assumed constant pressure to fill the reservoir. Many terms in the equa-
tion don’t seem to match with the diagram; certain variables were extrapolated
from the diagram. Bottom has 7 times more pressure than top (Euler wrote this
down, though others thought that it was the other way around). Euler knew this
was hydro-dynamical not hydro-static. Pressure at the bottom is much higher than
one would think.

One of the concerns of historians is that Euler ignored certain things / his
theory wasn’t practical. Euler, in his letters to the king, asked that if they change
anything (about the lead pipes), please let him know. Euler was extrapolating
from some of the Versailles fountains. Euler wanted to work, was doing some
experiments. Euler was put in charge of many administrative tasks. While he
might play with math for fun (manipulating infinities), he was far more careful on
the practical, applied calculations.

Another part, not dealt with this: Euler’s paper on ballistics and gunnery was
useless to the practical person. The way the first computer was funded was to
come up with firing tables / ballistic tables. Every variable from wind, tempera-
ture, gunpoweder temperature, et cetera: needed a different table for each combi-
nation. Euler’s paper only worked for those cannons he studied: even the hardness
of the ground influences greatly the tables. A historian not knowing the science
well enough can look at Euler’s book and say it’s useless; however, it probably
would not have been published or used back then if it didn’t work.

The equation is
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p = (k−y)gρ+(b− r)gρ

(
1− wp

g

dwp

dr

)
−a2ρwp

dwp

dr

∫
ds

z2
+

w2
p

2
ρ

(
1− a4

z4

)
.

(9.1)
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Chapter 10

Thursday, January 29th, 2004:
Euler and Continued Fractions

Lecturer: Dan File

10.1 Series Expansions

This talk is based on a translation by Dan File of a paper of Euler on continued
fractions. A generic continued fraction is of the form

a +
1

b + 1
c+ 1

d+ 1

...

, (10.1)

wherea, b, c, d, · · · ∈ N. We have convergents (truncating the continued fraction
after a finite number of digits). We have

p0

p1

= a,
p1

q1

= a +
1

b
, . . . . (10.2)

We have relations between the numerators and denominators:

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2. (10.3)

This implies that
pnqn−1 − pn−1qn = (−1)n−1; (10.4)
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this implies, in particular, that(pn, qn) = 1.
Direct computation gives

pn+1

qn+1

=
pn−1 + an+1pn

qn−1 + an+1qn

. (10.5)

We have the following

p0 = a

p1 = p0b + 1

p2 = p1c + p0

p3 = p2d + p1 (10.6)

and

q0 = 1

q1 = b

q2 = q1c + q0

q3 = q2d + q1. (10.7)

Looking at successive differences gives

pn+1

qn+1

− pn

qn

=
(−1)n−1

qnqn−1

. (10.8)

Another way of writing this is

p0

q0

= a

p1

q1

= a +
1

q0q1

p2

q2

= a +
1

q0q1

− 1

q1q2

, (10.9)

and so on. Thus, we are getting series expansions, and this series converge because
these denominators grow exponentially (at least as fast as the Fibonacci numbers).
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10.2 Another Perspective

What if we have an infinite series

s =
1

α
− 1

β
+

1

γ
+

1

δ
− · · · , α, β, γ, δ ∈ Z. (10.10)

From our earlier results, matching gives

q0q1 = α

q1q2 = β

q2q3 = γ. (10.11)

We setq0 = 1, and then find thatq1 = α, q2 = β
α
, q3 = αγ

β
. Alternatively, we have

q1 = α

q2 =
β

α

q3 =
αγ

β

q4 =
βδ

αγ

q5 =
αγε

βδ

q6 =
βδζ

αγε
. (10.12)

Using our earlier charts for conversion, we find that

b = q1

c =
q2 − q0

q1

d =
q3 − q1

q2

. (10.13)

Sinceq1 = α, we haveb = α. Thenq2 − q0 = cq1 = β−ga
q1

. As q1 = α, we have

thatc = q2−q0
q1

= β−α
α2 . As d = q3−q1

q2
, we need to findq3 − q1, which is justγ−β

q2
.

Thus,d = α2(γ−β)
β2 .
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Collecting our results gives

b = α

c =
β − α

α2

d =
α2(γ − β)

β2

e =
β2(δ − γ)

α2
γ2

f =
α2γ2(ε− δ)

β2δ2
. (10.14)

The pattern is clearer if we look at every other:

b = α

d =
α2(γ − β)

β2

f =
α2γ2(ε− δ)

β2δ2
(10.15)

and

c =
β − α

α2

e =
β2(δ − γ)

α2
γ2. (10.16)

Re-writing gives

b = α

β2d = α2(γ − β)

β2δ2f = α2γ2(ε− δ)

β2δ2ζ2h = α2γ2ε2(η − ζ) (10.17)

and

α2c = β − α

α2γ2e = β2(δ − γ)

α2γ2ε2g = β2δ2(ζ − ε)

α2γ2ε2η2i = β2δ2ζ2(θ − η). (10.18)
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Remember we had

s = 0 +
1

b + 1

c+
...

, (10.19)

as we are takinga = 0. Thus, we have

1

b + α2

α2c+ α2β2

β2d+
α2β2γ2

α2γ2e+
α2β2γ2δ2

β2δ2f+...

(10.20)

Now we do our big substitution:

1

α + α2

(β−α)+ α2β2

α2(γ−β)+
α2β2γ2

β2(δ−γ)+
α2β2γ2δ2

α2γ2(ε−δ)+...
(10.21)
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Cancelling gives

1

α + α2

(β−α)+ β2

(γ−β)+
γ2

(δ−γ)+ δ2

(ε−δ)+...
(10.22)

We now have great continued fraction expansions, but these continued fractions
are no longer simple.

10.3 Example:log 2

Consider

s = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · = log 2. (10.23)

In this example,

α = 1, β = 2, γ = 3, δ = 4, . . . (10.24)

This gives

1

log 2
= 1 +

12

1 + 22

1+ 32

1+ 42

1+...

(10.25)

For this, we trivially went fromlog 2 to 1
log 2

.
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10.4 Example: π
4

We have

s = 1− 1

3
+

1

5
− 1

7
+ · · · =

π

4
. (10.26)

We obtain

4

π
= 1 +

12

2 + 32

2+ 52

2+...

(10.27)

10.5 Example: Another Method

Consider

s =
1

ab
− 1

bc
+

1

cd
− · · · (10.28)

In this case, note that we have a common factor between adjacent terms. We have

s =
1

ab + a2b2

(bc−ab)+ b2c2

(cd−bc)+...

(10.29)

We can do some cancellation and factoring, and obtain

1

as
= b+

ab

(c− a) + bc
(d−b)+...

(10.30)
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For example, consider

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · ·

log 2− 1 = −1

2
+

1

3
− 1

4
+ · · ·

2 log 2− 1 =
1

2
− 1

2 · 3 +
1

3 · 4 −
1

4 · 5 + · · · (10.31)

Now substituting into the previous gives

1

2 log 2− 1
= 2+

1 · 2
2 + 2·3

2+ 3·4
2+...

(10.32)

In the taxonomy of continued fractions, this is similar toπ
4
. Similarly, we have

π

4
= 1− 1

3
+

1

5
− · · ·

π

4
− 1 = −1

3
+

1

5
− 1

7
+ · · ·

π

2
− 1 =

2

3
− 2

3 · 5 +
2

5 · 7
π

4
− 1

2
=

1

3
− 1

3 · 5 +
1

5 · 7 − · · · (10.33)

Similarly as before, we find

π

4
− 1

2
=

1

3 + 1·3
2+ 3·5

2+ 5·7
2+...

(10.34)
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10.6 Example: Yet Another Method

Consider

s =
a

α
− b

β
+

c

γ
− d

δ
+ . . . (10.35)

We find

as = α +
α2b

aβ − bα + acβ2

bγ−cβ+ bdγ2

cδ−dγ+...
(10.36)

For example, consider

s =
1

1
− 2

2
+

3

3
− · · · (10.37)

In some sense, we can interpret this as1
2
. Thus, inverting1

2
to 2 we get

2 = 1 +
2

0 + 3·4
0+ 8·9

0+ 15·16
0+...

(10.38)

This collapses to the fraction

2 = 1 +
2 · 12 · 2 · 4 · 32 · 4 · 6 · 52 · 6 · · ·
1 · 3 · 22 · 3 · 5 · 42 · 5 · 7 · 62 · · · (10.39)

10.7 Another Variety of Examples

Let

s =
1

α
− 1

αβ
+

1

αβγ
− 1

αβγδ
+ · · · (10.40)
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One can show

1

s
= α +

α

β − 1 + β
γ−1+ γ

δ−1+...
(10.41)

We have

1

e
= 1− 1

1
+

1

1 · 2 −
1

1 · 2 · 3 + · · ·

1− 1

e
=

e− 1

e
=

1

1
− 1

1 · 2 +
1

1 · 2 · 3 − · · · (10.42)

We find that

e

e− 1
= 1 +

1

1 + 2
2+ 3

3+ 4
4+...

(10.43)
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Chapter 11

Thursday, February 5th, 2004:
Euler and ζ(s): some formulas

11.1 Definition ofζ(s)

Lecturer: Warren Sinnott
A good survey article is by Ayoub,Euler and the zeta function, from around

1975. Another is by Weil,Number Theory(or something like that); other good
sources are Davenport’sMultiplicative Number Theory.

Thezeta functionis defined by

ζ(s) = 1 +
1

2s
+

1

3s
+ · · ·

=
∞∑

n=1

1

ns

which converges for reals > 1 (and complexs with <(s) > 1); thealternating
zeta functionζ±(s) is defined by

ζ±(s) = 1− 1

2s
+

1

3s
− 1

4s
+ · · ·

=
∞∑

n=1

(−1)n−1

ns
.

which converges for reals > 0 (and complexs with <(s) > 0).
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11.2 ζ(2), ζ(4)

Around 1700, a classical problem was to evaluate
∑∞

n=1
1
n2 . Similar sums had

been evaluated, for example,

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · . (11.1)

If we want to approximate the sum of1
n2 , one needs many terms (summingn ≤ x

gives an error of size1
x
); for example, Stirling did nine digits, the first eight being

correct.
Euler was born in 1707; Euler tried to find methods to improve ways to calcu-

late this sum. He invented many ways to speed up the convergence of this series.
One such method is the Euler-MacLauren method: letf(x) be analytic, and say
we want to evaluate

∑∞
n=1 f(n). In the end, Euler in the 1730s calculates

∑
1
n2 to

20 digits; doing this naively would take an enormous amount of time!
In 1734, Euler made a breakthrough and calculated exact values not just for

this series, but for series of the form
∑

1
n2k . We have

∞∑
n=1

1

n2
=

π2

6

∞∑
n=1

1

n4
=

π4

90
. (11.2)

Euler started with

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · · (11.3)

It has zeros atx = nπ, n ∈ Z. He guessed that maybe we could factor and get

sin x = n

∞∏
n=1

(
1− x

nπ

)
·
(
1 +

x

nπ

)
= x

∞∏
n=1

(
1− x2

n2π2

)
. (11.4)

Comparing with the expansion forsin x, we find that

sin x = x−
∞∑

n=1

1

n2π2
· x3 +

∑
n,m

1≤n<m

1

n2m2π4
· x5 − · · · (11.5)
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Thus, comparing coefficients gives

−
∞∑

n=1

1

n2π2
= −1

6
, (11.6)

which gives our sum
∑

1
n2 = π2

6
. For thex5 term, we have

∑
n,m

1≤n<m

1

n2m2π4
=

1

120
. (11.7)

We can rewrite and obtain
( ∞∑

n=1

1

n2

)
·
( ∞∑

m=1

1

m2

)
=

∞∑

k=1

1

k4
+ 2

∑
n,m

1≤n<m

1

n2m2
. (11.8)

Using our result for
∑

1
n2 , simple arithmetic gives

∑
1
k4 = π4

90
. It gets harder to

go for thex7 term and higher; Euler did up tok = 34 (just the evenks) by hand!

11.3 Another Approach

sin x = x− x3

3!
+

x5

5!
− · · · =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!

= x

∞∏
n=1

(
1− x2

n2π2

)
; (11.9)

taking the logarithmic derivative of the product formula leads to the series expan-
sion of the cotangent:

x cot x = 1− 2
∞∑

k=1

ζ(2k)

π2k
x2k
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To see this, note that we would have

cot x =
1

x
+

∞∑
n=1

−2x

1− x2

n2π2

· 1

n2π2

=
1

x
− 2x

∞∑
n=1

∞∑

k=0

x2k

(nπ)2k+2

x cot x = 1− 2
∞∑

k=0

x2k+2

π2k+2
ζ(2k + 2). (11.10)

Thus, if we can find a nice Taylor expansion forx cot x, we would have formulas
for ζ(2k + 2). Shifting variables, it is enough to study

x cot x = 1− 2
∞∑

k=1

x2k

π2k
ζ(2k). (11.11)

Unfortunately, it isn’t pleasant to take high derivatives oftan or cot; however,
one can clearly see that the coefficients in the Taylor expansion are rational.

TheBernoulli numbersBk, k = 0, 1, 2, . . . are defined by the generating func-
tion

t

et − 1
=

∞∑

k=0

Bk
tk

k!
= 1− 1

2
t +

1

6

t2

2!
− 1

30

t4

4!
+ · · · (11.12)

which implies that the Bernoulli numbers are all rational; we find

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = B5 = B7 = · · · = 0 (11.13)

They also arise in studying
∑N

n=1 nk. We also have (from the definition ofBk,
bringinget − 1 to the right hand side) that

1 =
∞∑

k=0

Bk
tk

k!
·
∞∑

k′=0

tk
′

(k + 1)!
. (11.14)

We additionally have

B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
, . . . (11.15)
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Note that

t

et − 1
+

t

2
=

t

2

et + 1

et − 1
=

t

2

et/2 + e−t/2

et/2 − e−t/2
(11.16)

is anevenfunction: this tells us thatBk = 0 if k is odd and> 1, and

t

et − 1
+

t

2
=

t

2

et/2 + e−t/2

et/2 − e−t/2
=

∞∑

k=0

B2k
t2k

2k!
. (11.17)

If we replacet by 2ix, we get again a series expansion for the cotangent; since

cos x =
eix + e−ix

2

sin x =
eix − e−ix

2i
. (11.18)

We find

x cot x =
∞∑

k=0

B2k
(2ix)2k

2k!
=

∞∑

k=0

(−1)kB2k2
2k x2k

2k!
. (11.19)

Comparing the two expansions for the cotangent we find:

ζ(2k) = (−1)k−122k−1π2k B2k

(2k)!
, for k = 1, 2, 3, . . . (11.20)

11.4 ζ(2k + 1)

What about the values ofζ(2k + 1)? It is now known thatζ(3) is odd, though
it is not known if it is transcendental. Other results include that at least so many
of certain sets of odd values must be irrational. The following is from a paper of
Euler from 1749. We are interested (say) in

¯ = 1m − 2m + 3m − 4m + · · ·
® = 1−n − 2−n + 3−n − 4−n + · · · (11.21)
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Let m be a non-negative integer. We can evaluate® for even values ofn.

ζ±(−m) = 1− 2m + 3m − 4m + · · ·
= x− 2mx2 + 3mx3 − 4mx4 + · · ·

∣∣
x=1

=

(
x

d

dx

)m (
x

1 + x

) ∣∣∣∣∣
x=1

=

(
d

dt

)m (
et

1 + et

) ∣∣∣∣∣
t=0

. (11.22)

So we need to find the Taylor expansion ofet

1+et . Note that (!):

et

1 + et
= 1 +

2

e2t − 1
− 1

et − 1
, (11.23)

so that

tet

1 + et
= t +

2t

e2t − 1
− t

et − 1

= t +
∞∑

k=0

Bk(2
k − 1)

tk

k!
. (11.24)

and so
et

1 + et
= 1 +

∞∑

k=0

Bk+1(2
k+1 − 1)

tk

(k + 1)!
. (11.25)

Note that the constant term is1 + B1 = 1
2
. Thus

ζ±(0) =
1

2

ζ±(m) =

{
(2m+1 − 1)Bm+1

m+1
for m = 1, 2, 3, . . .

0 if m = 2, 4, 6, . . .
(11.26)

We are using beautiful formulas, such as atx = 1, we have

1− 2 + 3− 4 + · · · =
1

4
. (11.27)
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The values ofζ± at positive integers: Recall thatζ±(s) = (1 − 21−s)ζ(s), so
we have

ζ±(1) = log 2

ζ±(2k) = (1− 21−2k)(−1)k−122k−1π2k B2k

(2k)!
, k = 1, 2, 3, . . . (11.28)

What doesζ±(2k + 1) equal?

ζ±(0) =
1

2
, ζ±(−1) =

1

4
, ζ±(−2) = 0, ζ±(−3) =

1

8
, ζ±(−4) = 0, . . . (11.29)

If he had gone more (he stopped at 9), he would’ve seen the 691 from Bernoulli
numbers resurface. Thus fork = 1, 2, 3, . . .

ζ±(1− 2k)

ζ±(2k)
=

22k − 1

22k−1 − 1
(−1)k−1 (2k − 1)!

π2k
(11.30)

and so

ζ±(1−m)

ζ±(m)
=





2m−1
2m−1−1

(−1)
m
2
−1 (m−1)!

πm if m is even,≥ 2

0 if m is odd,≥ 3
1

2 log 2
if m = 1

(11.31)

Euler observes that this can be written

ζ±(1−m)

ζ±(m)
=

{
− 2m−1

2m−1−1
cos(πm/2)Γ(m)

πm if m ≥ 2
1

2 log 2
if m = 1

(11.32)

and conjectures

ζ±(1− s)

ζ±(s)
= − 2s − 1

2s−1 − 1
cos(πs/2)

Γ(s)

πs
for all s. (11.33)

This does give value 1
2 log 2

ats = 1 and also reduces to

Γ

(
1

2

)
=
√

π (11.34)

whens = 1
2
. He continues and triess = 2k+1

2
, and does some numerics. Using

ζ±(s) = (1− 21−s)ζ(s), we can rewrite this conjecture in the form

ζ(1− s) = 21−s cos(πs/2)Γ(s)π−sζ(s), (11.35)

which is Riemann’s functional equation.
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11.5 Appendix onζ(s)

Handout from Steve Miller
Let [x] denote the greatest integer less than or equal tox, and let{x} = x−[x].

Following Davenport [Da], we have the following:

ζ(s) =
∞∑

n=1

n ·
[

1

ns
− 1

(n + 1)s

]

= s

∞∑
n=1

n

∫ n+1

n

t−s−1dt

= s

∞∑
n=1

∫ n+1

n

[t]t−s−1dt

= s

∫ ∞

1

[t]t−s−1dt

= s

∫ ∞

1

t−sdt− s

∫ ∞

1

{t}t−s−1dt

=
s

s− 1
+ O(s). (11.36)

Therefore, we have shown

Lemma 11.5.1.ζ(s) = s
s−1

+ O(s).

In fact, in the above theO(s) term is at most|s|. Let

ζx(s) =
∑
n≤x

1

ns
. (11.37)

We want to compareζ(s) with ζx(1) andζx(s). We have

ζx(1) = log x plus lower order terms. (11.38)

A similar argument as before gives

∞∑
n=x+1

1

ns
=

∞∑
n=x

n

[
1

ns
− 1

(n + 1)s

]
− 1

xs−1

=
s

s− 1
x1−s + O(x1−s). (11.39)

79



Let us choose

s = s(x) = 1 +
1

log x
. (11.40)

Then

∞∑
n=x+1

1

ns
= log x ·

(
1 +

1

log x

)
· x− 1

log x + O(1)

= (log x + 1) · e− log x
log x + O(1)

=
log x

e
+ O(1). (11.41)

Therefore,

ζx(s) = ζ(s)−
∞∑

n=x+1

1

ns

=
s

s− 1
+ O(s)− log x

e
+ O(1)

= (log x + 1)− log x

e
+ O(1)

=
e− 1

e
log x + O(1). (11.42)

Therefore, fors = 1 + 1
log x

, ζ(s), ζx(s) andζx(1) are all a constant timeslog x.
Up to lower order terms,ζ(s) andζx(1) both equallog x; ζx(s) is slightly smaller,
approximatelye−1

e
log x ≈ .632 log x.

Thus, the most efficient of these (to determineζ(s) for s close to 1) isζ(s) =
s

s−1
+ O(s), which involves one division. We can make theO(s) error explicit, as

s ·O(1); in fact, fors ≥ 1, theO(1) error is at mostπ
2

6
+ 1.
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Chapter 12

Thursday, February 12th, 2004:

Lecturer: Vitaly Bergelson

12.1 Euler and Continued Fractions II

Bostwick Wyman and his mother transferred a paper by Euler on continued frac-
tions. Two years later, Euler wrote another paper on the subject (50+ pages, many
expressions of continued fractions). Turns out that Russians (historians) are very
good at checking what Euler did in his notebooks – people have careers describing
what he did in his notebooks. There are at least 50 notes concerning continued
fractions. He was using continued fractions to calculate definite integrals. Some
of the crazy divergent series we’ve seen earlier came from continued fractions.

Four things Euler did with continued fractions:

1. Pell Equation (Euler didn’t care too much on proofs, cared about results and
speed of approximation; seems he knew the algorithm though Lagrange was
the one who proved it);

2. Euler showed thate ander, r ∈ Q, are irrational; he had explicit, infinite
continued fraction expressions for these, which imply they are irrationals,
although he never stressed this point (Lambert proved irrationality ofπ by
using continued fraction expansions of functions);

3. Euler was able to explain, by playing with sequences versus products, Brouncker’s
formula (forπ); in 1776 Euler observes that

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · (12.1)
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and

π

4
=

1

1 + 12

2+ 32

2+ 52
2+···

(12.2)

are identical; relates to the Wallis product

2 · 4 · 4 · 6 · 6 · · ·
3 · 3 · 5 · 5 · · · (12.3)

4. calculating integrals and solving differential equations (it was his knowl-
edge of some differential equations that led to his formulas fore).

12.2
√

n

√
2 = 1.41421356, (12.4)

which leads to a continued fraction expansion

1 +
1

2 + 1
2+ 1

2+···

. (12.5)

Does the same with
√

3,
√

3 = [1; 1, 2, 1, 2, . . . ], (12.6)

where the number before the semicolon is the greatest integer less than or equal
to our number.
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What is Euler’s proof? Start with fractions like

a +
1

b + 1
b+ 1

b+···

= x. (12.7)

. Thus, we find

x− a =
1

b + x− a

x = a− b

2
+

√
1 +

b21

4
. (12.8)

Letting b = 2, a = 1, we get the expansion forx =
√

2. Thus, we have the
expansion for

√
a2 + 1.

Take now numbers of the form

a +
1

b + 1
c+ 1

b+ 1
c+···

(12.9)

. He sees / believes from this that any nice periodic continued fraction will lead to
a quadratic irrational.

Theorem 12.2.1 (Lagrange).A simple (all ones along the numerators) continued
fraction ofx is eventually periodic if and only ifx is a quadratic irrational (called
a quadratic surd in this field).

Galois gave a necessary and sufficient condition for a continued fraction to be
purely periodic. Euler opened the gate for these two theorems.

12.3 Denominators in Arithmetic Progression

Consider a continued fractionx = [0; a1, a2, a3, . . . ]. We call theai the denomina-
tors (sometimes also call them digits). What about numbers whose denominators
are in arithmetic progression?
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Euler was the first one to usee, though sometimes they would usec or a or b
for 2.71828182845904 . . . . He divides by10 to a large power, and arrives at

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]. (12.10)

Then he studies
√

2 = 1.6487212707 = [1; 1, 1, 1, 5, 1, 1, 9, 1, 1, 13, . . . ]. (12.11)

He finds
3
√

e− 1

2
= [0; 5, 18, 30, 42, 54, . . . ], (12.12)

and then he finds
e2 − 1

2
= [3; 5, 7, 9, 11, 13, . . . ], (12.13)

finally giving an uninterrupted arithmetic progression.
Again, Euler takes a special case, where we have an arithmetic progression

interrupted by two terms:

x = [a; m,n, b,m, n, c,m, n, d, . . . ]

=
1

mn + 1
[(mn + 1)a + n; (mn + 1)b + m + n, (mn + 1)c + m + n, . . . ] .(12.14)

Proof? Take partial quotients, and see they are identical. Consider rational func-
tions ofe – will these be of this form? If something is of this form, is it a rational
function ofe?

Why didn’t Euler ask Lagrange’s Theorem? Why not attempt to try to charac-
terize all continued fractions that are periodic or eventually periodic? What is the
general characterization of such expressions?

Theorem 12.3.1 (Euler).Consider

[a; m,n, b, m, n, c, m, n, . . . ]− [a; n,m, b, n, m, c, n, m, d, . . . ]. (12.15)

This equalsn−m
1+mn

.

Remark 12.3.2 (Sinnott).This looks a lot like the formulatan(x + y).

Consider now

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . . ]
1

e− 2
= [1; 2, 1, 1, 4, 1, 1, 6, . . . ], (12.16)
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and then ends with (after using a modification of the arguments we gave with

[a; m,n, b, m, n, c, m, n, d, . . . ]; he shifted so that it would start in this form)

e = 2 +
1

1 + 2
5+ 1

10+ 1
14+ 1

18+···

, (12.17)

which is an arithmetic progression, and almost simple (just one non-one).

12.4 Riccati Equation

Consider the equation
ady2 + ydx = x. (12.18)

After some substitutions, it is equivalent to

adq + q2dp = dp. (12.19)

As an exercise, show this is the same as

q =

[
a

p
;
3a

p
,
5a

p
,
7a

p
, . . .

]
. (12.20)

We have
adq

1− q2
= dp. (12.21)

From this, we can obtain

a

2
log

1 + q

1− q
= p + c. (12.22)

He finds
e

1
s = [1; s− 1, 1, 1, 3s− 1, 1, 1, 5s− 1, . . . ]. (12.23)

Nowadays, we know there is a connection between SL2(R) and continued

fractions. This group is the set of all2 × 2 matrices

(
a b
c d

)
with determinant

one; the action onz ∈ C is defined byz 7→ az+b
cz+d

.
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12.5 Digits and Normality

Take a typicalx ∈ [0, 1]. What can one say about such a typicalx? Write

x = [0; a1(x), a2(x), a3(x), . . . ]. (12.24)

See in this symbolic representation of a number, but unlike a decimal, all num-
bers are now possible as digits. Via this connection,x ∈ NN (let’s assumex is
irrational). Consider the shift operator.

Analogous to decimals: letx =
∑ dn(x)

10n . If we look at10x mod 1, we have∑ dn+1(x)
10n . Consider the shift on this space. Here, want to send[a1, a2, a3, . . . ] to

[a2, a3, a4, . . . ]. The operation is

Tx =

{{
1
x

}
if x ∈ (0, 1)

0 if x = 0
(12.25)

where{y} is the fractional part ofy. We can look at this on the first quadrant,
getting hyperbolas. It is not Lebesgue measure preserving. Gauss discovered that
the following measure is invariant:

1

log 2

∫

A

dx

1 + x
. (12.26)

Gauss didn’t know how fast one approaches this measure, what is the speed of
convergence? Not unrelated to speed of convergence of continued fractions. Easy
to see this works for intervals, but how does one find this? Gauss found it from
solving some differential equation. Kuzmin and Levy in the 1900s finished the
work.

What is normality? We have an iterated function system. We should have a
notion of normality. For decimal expansions (or, even simpler, binary expansions
x =

∑ bn(x)
2n , bn ∈ {0, 1}), then any finite word of 0s and 1s should occur with

the correct frequency. For continued fractions, we have infinitely many words of
a given length (very different than the binary case). We expect almost all numbers
are normal. Surprisingly, only proved in the 1970s.

For decimals, the number

.1234567891011121314151617181920 . . . (12.27)

is normal. We also have

.12357111317192329 . . . (12.28)
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In general, for good functionsf , we have

.f(1)f(2)f(3)f(4)f(5) . . . (12.29)

will be decimal normal.

Theorem 12.5.1.For almost allx,

a1(x) + a2(x) + · · · an(x)

n
→ ∞

n
√

a1(x)a2(x) · · · an(x) → Khinchin’s Constant (12.30)
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Chapter 13

Thursday, February 19th, 2004:
Euler and Prime Producing
Quadratics

Lecturer: Scott Arms

13.1 Prime Generating Polynomials: Examples

References:Prime Producing Polynomials and Principal Ideal Domains(D. Fendel);
Prime-Producing Quadratics(R. A. Mollin, American Mathematical Monthly,
vol 104, 1997, 529-544);Prime Generating Polynomial(E. Weisstein, math-
world.com).

Example 13.1.1.Consider
{

x2 − x + 41 : x ∈ {0, 1, . . . , 40}
}

. (13.1)

Note 0 and 1 give the same prime; however, every element in this range is a prime
number! Another example is

{
x2 + x + 39 : x ∈ {0, 1, . . . , 39}

}
. (13.2)

This gives distinct primes (letter to Legendre). Both examples are due to Euler.
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Consider now
{

x2 + x + 3 : x ∈ {0, 1}
}

{
x2 + x + 5 : x ∈ {0, 1, . . . , 5− 2}

}

{
x2 + x + 11 : x ∈ {0, 1, . . . , 11− 2}

}

{
x2 + x + 17 : x ∈ {0, 1, . . . , 17− 2}

}
. (13.3)

We want long strings of primes from a polynomial (ie, evaluating the polynomial
at consecutive integers gives primes).

A lofty goal: find all primesp with quadratic of this form "working" (ie,x2 +
x+ p is prime forx ∈ {0, . . . , p− 2}; we’ll formalize later what working means).

13.2 Prime Production Length

Definition 13.2.1 (Prime Production Length). For F∆(x) = x2 + x + A (with
discriminant∆ = 1 − 4A) hasprime production lengthl if l ≥ 0 is the least
integer such thatF∆(x) is prime forx ∈ {0, 1, . . . , l − 1} and eitherF∆(l) is
compositeor F∆(l) = 1 or F∆(l) = F∆(x) for some integerx ∈ {0, 1, . . . , l−1}.
Theorem 13.2.2.If l ≥ 1 is the prime production length ofF (x) = F∆(x), then
l ≤ A−1. If p is the smallest odd prime such that∆ is a quadratic residue modulo
p, thenl < p. Moreover, ifl ≥ A−1

2
andA 6= 2, thenA = p.

Proof.

F (A− 1) = (A− 1)2 + (A− 1) + A

= A2 − 2A + 1− 1 + A + A

= A2, (13.4)

which is composite. Thus,l ≤ A − 1. Without loss of generality, letx ∈
{0, 1, . . . , p− 1}. We break into two cases (x = 0 andx 6= 0).

If x = 0, thenp divides the discriminant∆ = 1 − 4A. Thus,F (p−1
2

) =
p2−∆

4
≡ 0 mod p. If l > p−1

2
, then p2−∆

4
= p. So0 > ∆ = p2 − 4p. SOp = 3

(sincep is odd),∆ = −3, A = 1, andl = 0 (contradiction); thus,l ≤ p−1
2

< p.
Suppose∆ 6= −7 and l ≥ A−1

2
. Now ∆ = 1 − 4A ≡ 1 ≡ 12 mod A. So

eitherA = 2 or p ≤ A (as12 is a quadratic residue). Asp is odd, this implies that
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p ≤ A. If p < A, thenl ≤ p−1
2

< A−1
2

, a contradiction. This completes the proof
in the casex = 0.

Suppose nowx > 0. Without loss of generality, we may assumex is odd
(otherwise we can takep − x, which squares to the same value modp). So∆ ≡
(2n + 1)2 mod p, andF (n) = n2 + n + A. This gives (simple algebra) that
(2n+1)2−∆

4
≡ 0 mod p. Also, F (p − 1 − n) ≡ F (n) mod p. Therefore,l ≤

p − 1 − n < p (p dividing two different things, can’t both be prime). Suppose
A 6= 2 and l > A−1

2
. Thus,0 ≤ n ≤ p−1

2
; by a similar argument as before

we find that forA 6= 2, sincep is the minimalp making it a quadratic residue,
that 0 ≤ n < p−1

2
≤ A−1

2
≤ l. So F (n) = p is a prime (sincen < l, and l

is the prime production length). This yields thatF (0) = A ≤ F (n) = p (since
F is increasing). Thus,A ≤ p, which givesA = p. This proof is from Mollin
1997.

Theorem 13.2.3.Assuming the Hardy-Littlewood Primek-tuple conjecture, for
all B ∈ N there exists anA ∈ N such thatx2 +x+A has prime producing length
B.

ForB = 41, A > 1018 for quadratics of this form (Lukes, Patterson, Williams).

13.3 Optimality of Euler’s Quadratic Polynomial

Let x2 + x + A = (x + α)(x + α), with α = 1+
√

1−4A
2

. Let K = Kα(A) =

Q(α(A)) = Q(
√

1− 4A). We letOK be allx ∈ K such that the minimal poly-
nomial ofx is monic and has integer coefficients. This is a Dedekind ring ring.

Lemma 13.3.1.The set of fractional ideals modulo the principal ideals is finite;
we call its orderh = h∆ (the class number).

Theorem 13.3.2.If OK is a unique factorization domain (UFD),α as above, then
F (x) = F∆(x) = x2 + x + A has prime producing lengthA− 1.

Theorem 13.3.3.If F (x) as above has prime values for0′lex ≤ b1
2

√
4A−1

3
c, then

QK (as above) is a principal ideal domain (PID).

Corollary 13.3.4. OK (as above) is a PID if and only if it is a UFD.

Theorem 13.3.5 (Stark 1967).OK (as above) is a PID if and only if4A − 1 ∈
{3, 7, 11, 19, 43, 67, 163}.

This gives that the Euler Polynomial has the optimal prime producing length
for quadratics of this form.
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13.4 Other Polynomial Forms

Euler also looked at non-monic polynomials, such as (letter to Legendre)2x2 + p,
p prime. For example, forp = 29, this is prime forx ∈ {0, 1, . . . , 28}. If you try
3x2 + 3x + 23, this has prime production length of 21. If one tries6x2 + 6x + 31,
this has prime production length of 29.

These polynomials are related. We have

2x2 + 29 = 2x2 − 02 − 4 · 2 · 29

4 · 2
3x2 + 3x + 23 = 3x2 + 3x +

32 − 4 · 2 · 23

4 · 3
6x2 + 6x + 31 = 6x2 + 6x +

62 − 4 · 6 · 31

4 · 6 . (13.5)

These all have prime producing lengths equal tob |discriminant|
4q

c, with q the lead-
ing coefficient.

Definition 13.4.1 (Fundamental Discriminant). If D 6= 1 is a square-free inte-
ger and

∆ =

{
4D if D 6≡ 1 mod 4

D if D ≡ 1 mod 4
(13.6)

then∆ is a Fundamental discriminant.

Definition 13.4.2. For ∆ a Fundamental Discriminant,q ≥ 1, q|∆ (q-square-
free), then

F∆,q(x) =

{
qx2 − ∆

4q
if 4q|∆

qx2 + qx + q2−∆
4q

otherwise
(13.7)

Definition 13.4.3.F (∆, q) is the maximum number of primes dividing anyF (x) =

F∆,q(x) for x ∈ {0, 1, . . . , b |∆|
4q
− 1c.

The examples we’ve listed earlier in the talk fit in this formulation. For exam-
ple, the discriminant of2x2 + 29 is 0 − 4 · 2 · 29 has two prime factors (2, 29).
The discriminant of3x2 + 3x + 23 is−3 · 89 which has two prime factors (3, 89).
The discriminant of6x2 + 6x + 31 is 4(−3 · 59), which has three prime factors
(2,3,59).
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Theorem 13.4.4 (Gauss).Let∆ < 0 be a Fundamental Discriminant withN +1
distinct prime factors. Then the class number of the field corresponding to the
polynomial with discriminant∆, h(∆), satisfiesh(∆) = 2N if and only if the
exponent of the class group is less than or equal to 2.

Theorem 13.4.5 (Mollin 1995 or 1997).Let∆ < −4 be a Fundamental Discrim-
inant withN +1 distinct prime factors,p being the largest. Supposeq ≥ 1 divides
∆, q is square-free, andq hasm distinct prime factors. Then(∆, q) = N +1−m
andh(∆) = 2F (∆,q) if and only if the exponent of the class group is less than or
equal to 2.

Corollary 13.4.6. For ∆ < −4 a Fundamental Discriminant,h(∆) = 1 if and
only if F (∆, 1) = 1.

Corollary 13.4.7. For ∆ < −4 a Fundamental Discriminant,h(∆) = 2 if and
only if F (∆, 2) = 2.

We have that2x2 + p has prime production length equal top if and only if
Q(
√−2p) has class number 2 if and only ifp ∈ {3, 5, 11, 29}.
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Chapter 14

Thursday, February 26th, 2004:
Eulerian Integrals: Γ and
β-Functions

Lecturer: M.C.
A good reference (now available in English) is V. A. Zovich’sIntroduction to
Mathematical Analysis.

14.1 Γ-Function

Definition 14.1.1 (Γ-Function).

Γ(α) =

∫ ∞

0

e−xxα−1dx =

∫ ∞

0

e−xxα dx

x
. (14.1)

This integral makes sense forα > 0. If we restrictα to be a positive integer, we
haveΓ(n + 1) = n!. This follows from integration by parts; thus, theΓ-function
is a generalization of the factorial function. TheΓ-function satisfiesΓ(α + 1) =
αΓ(α). We haveΓ(0) = 1, or 0! = 1.

14.2 β-Function

Definition 14.2.1 (β-Function).

β(a, b) =

∫ 1

0

xa−1(1− x)b−1dx. (14.2)
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Converges fora > 0 andb > 0. Notice thatβ(a, b) = β(b, a). Very important
in future applications is

Lemma 14.2.2 (Lowering Formula). For α > 1,

β(a, b) =
a− 1

a + b− 1
β(a− 1, b). (14.3)

Proof.

β(a, b) =

∫ 1

0

xa−1(1− x)b−1dx. (14.4)

We integrate by parts, withxa−1 = u and(1− x)b−1dx = dv. We find

β(a, b) = −1

b
xa−1(1− x)b

∣∣∣
1

0
+

1

b

∫ 1

0

(a− 1)xa−2(1− x)bdx

=
a− 1

b

∫ 1

0

xa−2(1− x)b−1 · (1− x)dx

=
a− 1

b

[∫ 1

0

xa−2(1− x)b−1dx−
∫ 1

0

xa−2(1− x)b−1dx

]

=
a− 1

b
[β(a− 1, b)− β(a, b)]

b

a− 1
β(a, b) = β(a− 1, b)− β(a, b)

a + b− 1

a− 1
β(a, b) = β(a− 1, b)

β(a, b) =
a− 1

a + b− 1
β(a− 1, b). (14.5)

If we switcha andb we immediately obtain

Corollary 14.2.3. For β > 1,

β(a, b) =
b− 1

a + b− 1
β(a, b− 1). (14.6)
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If we keep applying formulas like the above, we eventually obtain

β(a, b) =
(a− 1)(a− 2) · · · (2)

(a + b− 1)(a + b− 2) · · · (b + 1)
β(1, β) (14.7)

However, asβ(1, b) = 1
b
, yielding

β(a, b) =
(a− 1)!(b− 1)!

(a + b− 1)!
. (14.8)

Multiplying both sides bya (where we are assuminga, b are integers) gives us
that

aβ(a, b) =
a!(b− 1)!

(a + b− 1)!

=
1(

a+b−1
a

) . (14.9)

This gives a generalization of the binomial coefficients:
(

x

y

)
=

1

yB(y, x− y + 1)
. (14.10)

We can now generalize Pascal’s Triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 6 1 (14.11)

or
(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(14.12)

Note that the first diagonal of Pascal’s triangle is all 1s. The next diagonal is
1, 2, 3, 4, 5, and so on. Thus, it looks likex. Using the generalization of the
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Binomial coefficients to
(

x
y

)
= 1

yβ(y,x−y+1)
, we see that

(
x
1

)
= x. Now looking at

the third diagonal, which starts 1, 3, 6, 10, and so on. This isx(x+1)
2

, and when
we study

(
x
2

)
we see something similar. Looking at

(
x
b

)
whereb is a half-integer

yields interesting patterns. For example,b equals 2 has one zero,b equals 3 has
two zeros; if we takeb = 5

2
, we get 2 zeros, and if we takeb = 7

2
we get three

zeros.
We can rewrite, using the relation

β(a, b) =
Γ(a)Γ(b)

Γ(a + b)
. (14.13)

Using this, we can re-write the binomial coefficient generalization as
(

x

y

)
=

Γ(x + 1)

Γ(y + 1)
Γ(x− y + 1). (14.14)

We don’t have Pascal’s Triangle if we don’t have addition between entries.
The great result is that the addition holds for the continuous analogue as well!

14.3 Catalan Numbers

Start with

11 (14.15)

We then write again underneath

11

11 (14.16)

And continue in some sense. A better definition (one we remember) is

cn =
1

n + 1

(
2n

n

)
. (14.17)

Definition 14.3.1 (Non-Crossing Partitions).We define anon-crossing partition
P of a set S to be a partition into pairsSj = {sj1 , sj2} such thatsj1 < sk1 < sj2

iff sj1 < sk2 < sj2.
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Lemma 14.3.2.The numbersk of non-crossing partitions of[2k] is thekth Cata-
lan numberck = 1

k+1

(
2k
k

)
.

Any non-crossing partition pairs 1 with some even element2m, since any
elementsj1 between 1 and its pair partner must also havesj2 between 1 and its
pair partner. The number of pair partitions containing{1, 2m} is sm−1sk−m: it is
determined by a non-crossing partition of the numbers inside(1, 2m) and one of
those outside(1, 2m). This gives us the recursion relationsk =

∑k−1
i=0 sisk−1−i

for k ≥ 2.
Another definition is in terms of legal arrangements of parentheses.
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Chapter 15

Thursday, March 4th, 2004:
Continued Fractions related to
Elliptic Functions

Lecturer: Eric Conrad

15.1 Elliptic Functions

Lots of ways to tackle elliptic functions – we will follow an approach from the
early 19th century. What is an elliptic function? One definition is a trigonometric
functions of Jacobi’s amplitude function. Equivalent to a definition by Liouville
(meromorphic doubly periodic single valued). Jacobi showed equivalent.

Elliptic functions were functions related to what is now called elliptic inte-
grals. Legendre studied these functions extensively. He showed that any elliptic
integral (won’t say exactly what this is: an integral of a rational function of a cu-
bic or quartic) can be written in terms of elementary integrals plus three kinds of
elliptic integrals. One kind, which he called the first kind,F (x, k):

F (x, k) =

∫ x

0

dx√
(1− s2)(1− k2s2)

, (15.1)

(technically, an incomplete integral of the first kind) is the most important type.
Normally 0 < k < ‘1 (if k > 1, changes → s

k
; thus it suffices to takek < 1).
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More specifically, we can consider

F (x, a, b) =

∫ x

0

dx√
(1− a2s2)(1− b2s2)

, (15.2)

and by simply changings we can reduce toF (x, k).
He had two students in correspondence (Jacobi, Abel). If we cover up the

second factor, it is anarcsin . If we makek = ±1, it is a perfect square, and
simple to evaluate (inverse hyperbolic tangent, or can change variables a bit and
get an inverse tangent). Would you prefer to work with tangent or inverse tangents,
or sine or arcsine? Easier to work with the formers than the latters. For these, we
work with the inverses of these integrals.

Jacobi defines the amplitude function, does a trig substitution in this, Some
technicalities in inverting. What happens when we invert? Jacobi obtained three
functions; we’ll use slightly different notation.

s = sn(u, a, b), (15.3)

where sn is the sinus amplitudinus (sine of the amplitude); Jacobi’s notation was
sin am(u, k).

It is helpful to define two more functions. Remember we have classically that
1− sin2 θ = cos2 θ. Thus, analogously, we let

c = cn(u, a, b) (15.4)

and

d = dn(u, a, b). (15.5)

We have
dn = ∆am, ∆(s) =

√
1− k2s2. (15.6)

These are related through a birth-death process. We have variableu and pa-
rametersa, b:

dsn(u, a, b)

du
= c · dn(u, a, b)

dcn(u, a, b)

du
= −a2s · dn(u, a, b)

ddn(u, a, b)

du
= −b2s · cn(u, a, b). (15.7)

99



Jacobi usesk, which corresponds toa = 1, b = k.
We need initial conditions for our differential equations. We have

sn(0) = 0, cn(0) = 1, dn(0) = 1. (15.8)

Using the initial conditions and the differential equations, we can expand in a
Maclaurin series.

The functions have quarter-periodsK, iK ′ given by

K(k) = F (1, k); (15.9)

this is called a complete elliptic integral of the first kind. Further,

K ′(k) = K(k′) = K(
√

1− k2), (15.10)

wherek′ is the complementary modulus tok.
The name of these integrals come from finding arc lengths of curves (ellipses,

lemniscates, and so on).

15.2 Maclaurin - Taylor Series

Now that we have Maclaurin series, we go to our toolbox which includes the
Laplace Transform:

L{f(t), s} =

∫ ∞

0

f(t)e−stdt. (15.11)

We will use a variant:L{f(u), x−1}. Formal integration gives

L
{ ∞∑

n=0

anun

n!
, x−1

}
= x

∞∑
n=0

anx
n. (15.12)

Issues of convergence: there is a norm which justifies this (the formal power series
norm).

15.3 Example One: From IVP to Pythagorean The-
orem

it is very useful to have a Pythagorean Theorem analogue. We have

cn(u, a, b)2 = 1− a2 · sn(u, a, b)2. (15.13)
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Start by showingc2 +a2s2 is constant (differentiate). Then using the initial values
show the constant is one. Can get two more Pythagorean theorems. Thus, higher
powers of cn(u, a, b) can be replaced with sn(u, a, b). The other important one is

dn(u, a, b)2 = 1− b2 · sn(u, a, b)2. (15.14)

Lots of Laplace transforms of elliptic functions. ConsiderL{cn(u, a, b), x−1}:
what is this equal to? We establish recurrences.

Let

Cn = L{
cn(u, a, b)sn(u, a, b)n, x−1

}

Dn = L{
dn(u, a, b)sn(u, a, b)n, x−1

}
. (15.15)

We wantC0 = L{cn(u, a, b), x−1}. If we integrate by parts, we obtain

C0 = x− a2xD1. (15.16)

Look at the recurrences. Each time we get a new letter, we get anx. What does
the x do? Pushes us further along in the Laplace transform power series. The
formal power series norm: find the first coefficient with a disagreement between
two terms, and take2 to the negative of that power. We are pushes thexs off to
infinity one at a time, and we get convergence in the sense of our norm.

Thus,C0 is our start on the Laplace transform. The next thing we need isD1,
which can be defined in terms ofC0 andC2. We already have a relation forC0;
C2 can be obtained throughD1 andD3. We have three term recurrences. We find

C0 = x + a2xD1

Cn = nxDn−1 + (n + 1)a2xDn+1

Dn = nxCn−1 + (n + 1)b2xCn+1. (15.17)

Three term recurrences: should think continued fractions. We have

C1 = xD0 − 2a2xD2

xD0 = C1 + 2a2xD2

xD0

C1

= 1 + 2a2x
D2

C1

C1

xD0

=
1

1 + 2a2xD2/C1

C1

D0

=
x

1 + 2a2xD2/C1

, (15.18)
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which sets us up for a continued fraction solution. Similar recurrence forD2

C1
, and

so on. We can write as

Cn

Dn−1

=
nx

1− (n + 1)a2xDn+1/Cn

, . . . (15.19)

We end up with the continued fraction

C0 =
x

1 +
1a2x2

1 +
4b2x2

1 +
9a2x2

1 +
16b2x2

1 +
. . .

(15.20)

Stieltjes had formulas forL{sn(u, k), x−1},L{cn(u, k), x−1},L{dn(u, k), x−1}.
Can also do Laplace transforms on

sc(u, k) =
sn(u, k)

cn(u, k)
, (15.21)

which is an analogue of tangent (notation due to Glaisher). Using a modular trans-
formation, one finds after taking the Laplace transform that we have something
nice. In fact, it is related to sn at another lattice.
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Chapter 16

Thursday, March th, 2004:

Lecturer:

√
2 =

1

2 +
1

2 +
1

2 + · · ·

(16.1)
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