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Abstract

We will discuss many of Euler's gemsAll notes were taken in real-time; all
mistakes should be attributed to the typist, not to the lecturer.
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Chapter 1

Perfect Numbers: Wednesday,
October 8, 2003

Lecturer: Scott Arms

1.1 Definitions

Definition 1.1.1 (Proper Divisor). m is a proper divisor of: if m|n andm < n.

Definition 1.1.2 (Perfect Number). A natural numbenm is perfect if and only if
it is equal to the sum of all its proper divisors.

Examples aré, 28, as well as2!3166916(213166917 _ 7). the |ast is the largest
known to date, more than 8 million digits!

Before Euler, 7 perfect numbers were known. Euler, in 1772, found the eighth
perfect number3°(231 — 1).

1.2 Ancient Results

Theorem 1.2.1 (Euclid). If 2¥ — 1 is prime, ther2*~1(2* — 1) is perfect.

Proof. Let N = 2¢-1(2%¥ — 1) = 2*~1p. Then we can write down the sum of the
divisors quite easily:



dod = (424425 4p24-- 4282

d|N
N>d>0

= 2*-1+p2~-1)
p(2F 41 -1)
= p-2Ml = N (1.2)

]

Before Euler, only the first seven perfect numbers were known. In addition to
finding a new perfect number, Euler provided a characterization for even perfect
numbers: now one only needs a characterization of odd perfect numbers to have
a complete theory! To date, only partial results concerning odd perfect numbers
are known (they must be at least so large, they must have at least so many factors,
and so on).

1.3 Euler’'s Characterization of Even Perfect Num-
bers

Define a functionr : N — N by

o(n) = Zd. (1.2)

d|N
d>0

Lemma 1.3.1.n is perfect if and only i (n) = 2n.
Lemma 1.3.2.p is prime if and only i (p) = p + 1.

Lemma 1.3.3.If the greatest common divisor of andn is 1 (ie, if (m,n) = 1),
theno(mn) = o(m)o(n).

Exercise 1.3.4.Provec(2F~1) = 2% — 1.

Theorem 1.3.5 (Euler).If N is a perfect even number, thévi = 2k-1(2F — 1)
for some integek € N, and2* — 1 is prime.



Proof. By unique factorization, we can writ§ = 2*~'m for some oddn € N.
Thus, (281, m) =1, so

a(N) = a(25Ha(m). (1.3)
Further,NV is perfect, so

o(N) = 2N = 2Fm. (1.4)

Therefore,

2m = (2" = 1Do(m). (1.5)

Since2* — 1is odd,2* — 1 dividesm. Letm = (2 — 1)M. Thus,

2k 2F — )M = (28 — 1)o(m). (1.6)
Therefore,

2KM = o(m). (1.7)
Note that)/|m, implying

2k N

o(m)

m+ M

2F 1M+ M

M(2F —1+1)

28 M. (1.8)

v

As we have the same at the start and the end, we must have equality every-
where. Thus,

o(m) = m+ M. (2.9)
Thus,m is prime andM = 1.
O

Remark 1.3.6. Where do we use tha¥ is even, ie, where do we use thiat- 1?
If £ = 0, impossible. Ik = 1, thenm and M are not different; ift > 2, then
M < m.



1.4 Odd Perfect Numbers

Regius defined perfect numbers to be even (around 1550). We have a nice charac-
terization of even perfect numbers. What can we say about odd perfect numbers?
Do they exist? No one can find any.

Suppose an odd perfect number exists. Can we say anything about the proper-
ties it must have?

Frenicle (1657) stated the following, first proved by Euler.

Theorem 1.4.1 (Frenicle-Euler).If N is an odd perfect number, theN =
php? - p2r for p distinct primesk, j € N, andp, = k = 1 mod4.

Exercise 1.4.2.Note this impliesV = 1 mod4.
Proof.
N = pi'ps-pr (1.10)
N perfect if and only ifo(N) = 2N. Since the numbers are mutually prime,
we obtain

[[eki) = 2N. (1.11)

Soo(N) = 2 mod4, thus at least one-term is even. Itwowere even, would
have wrong congruence. There is thus a unigusuch thab(pfgo) = 2 mod4.
Without loss of generality, let, = 1.

Suppose; = 3 = —1 mod4. Then

o) = 14+pi+p+---+pf
= 1+ (=1)+(=1)>+--+(=1)“ mod4

_ 0 mod4 ?fei odd (1.12)
1 mod 4 ife; even
Sop; must bel mod 4, and ifp; = 3 mod 4, ¢; must be even.
If p, = 1 mod 4, then
opf) = Y1
0
= e;+ 1 mod4. (1.13)

8



Sincep; = 1 mod 4, we must have; = 1 mod 4. Fori > 1, if p;, = 1 mod 4,
thene; is even. This is exactly what we needed, namely, all exponents but the first
are even, and the first exponentismod4.

O

1.5 Touchard

Theorem 1.5.1 (Touchard 1953)If N is an odd perfect numbely must be of
the form12m + 1 or 36m + 9.

We will give Holdener’s proof from 2002.
Lemma 1.5.2. N cannot have the forrem — 1.

Proof. SupposeV = 6m — 1. ThenN = —1 mod3. For any divisord of N, we
have

d~% = N =—1mod3. (1.14)
So,eitherd = 1 mod 3 and% = —1mod3ord=—1mod3 and% = 1 mod
3.
Thus,
a(N) = > <d+ ﬂ) =0 mod 3 (1.15)
d|N d B ' .
0<d<vN
However,
o(N) = 2N
= 2(6m—1)
= 12m — 2
= —2 mod 3
= 1 mod 3, (1.16)

and we have a contradiction.



We now look modulo 6, and prove the theorem.

Proof. By Lemma 1.5.2)N cannot be of the forrim — 1. Therefore N = 6m+1
or6m+3. Hence,N is congruent to either 1 or 3 mod 6. But from Theorem 1.4.1,
we know N is congruent td mod4. Therefore, eitheV is congruent to 1 mod 4
and mod 6, otV is congruent to 1 mod 4 and 3 mod 6.

Solving these simultaneously yield§ has the formi2m + 1 or 12m + 9.

We're halfway there, just need to improve thn + 9 case a bit. Assumg’
is of the form12m + 9 and3  m. Then

o(N) = o(3(4m+3))
= o(3)o(dm +3)
= 4do(4dm +3)
= 0 mod 4. (1.17)

Therefore, we have a contradiction®&sV) = 1 mod 4. (Note: we could skip
the above lines by referring to an earlier result).
O
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Chapter 2

Euler and Geometry: Wednesday,
October 15, 2003

Lecturer: John Christopherson

2.1 Heron’s Formula

Theorem 2.1.1 (Heron).For a triangle A with sides of lengths, b and ¢, the
area of the triangle is

AreaA) = /S(S —a)(S —b)(S —c), (2.2)
whereS is the semi-perimeter
S = %b“ (2.2)

This theorem was known in classical times, and Euler provided new proofs.
Exercise 2.1.2.What about the generalization to a tetrahedron?

Exercise 2.1.3.What about a more general polygon in the plane? Open problem
if there are sufficiently many sides.

12



2.2 Geometry Terms

Definition 2.2.1 (Orthocenter). Consider a triangle with verticed, B and C.
Construct the perpendicular bisectors to each side (the altitudes). The three lines
meet in a common point, called the orthocenter.

Remark 2.2.2. Of course, implicit in the above definition is that the three altitudes
domeet in a point.

Definition 2.2.3 (Centroid). Intersection of the three medians (lines from vertex
to midpoint of opposite side.

Definition 2.2.4 (Circumcenter). The Circumcenter is the center of the circle
which passes through the three vertices of the triangle.

Definition 2.2.5 (Incenter). The Incenter is the center of the circle which is tan-
gent to the three sides.

Remark 2.2.6. Take midpoints of three sides, gives us six vectors, two eminating
from each vertex. Replace every two vectors at a vertex by their sum (the resultant)
going from vertex to opposite side. No rotation, must meet at a point. Assume have
a balanced triangle, homogenous material, balancing on a point. Can replace
forces with sums. If don’t sum to zero, have a net force.

2.3 Euler’s Line

Theorem 2.3.1 (Euler’s Line). The centroid, orthocenter, and circumcenter meet
in a point.

Euler’s line has a lot of significancdriangle Centers and Central Triangles
indexes a lot of points that are important in triangles, and there are spawyal
points that are also on Euler’s line.

Remark 2.3.2. The Incenter need not be on Euler’s line.

Remark 2.3.3. Euler’s Line does not generalize to Hyperbolic Geometry. See
Euler’s Line in Hyperbolic Geometryeffrey Klus.

Remark 2.3.4. Altitudes of a Tetrahedron and Traceless Quadratic Fommite
American Mathematical Monthly (October 2003), by Hans Havlicek and Gunter
Wei5, talk about generalizations.

13



2.4 Euler's Proof of Euler’s Line

Euler proceeds by brute force, calculating the coordinates of the three special
points.

Without loss of generality, let be at(0,0), let B lie on thez-axis, and let
C be in the first quadrant; it is an easy exercise to show that any triangle may be
taken in this form.

14



2.4.1 Orthocenter

Construction of Euler's Line

Orthocenter Construction

15



Let P be the intersection of the altitude #03, let M be the intersection of the
altitude toBC, and letO be the intersection of the two lines. Let the sides of the
original triangle bez, b andc (side of lengthe is opposite vertex”). Euler uses
the Law of Cosines:

a> = b*+c* — 2bccos(A)
AP
= b+ - 2bcT, (2.3)

which implies that

b? + 2 — a?

AP = (2.4)
2c
Proceeding similarly, one obtains that
2 2 72
BM — % (2.5)
Let
1—
K = §AMa, (2.6)
thus
a7 = 28 2.7)
a
We haveAAM B ~ AAPQO, which yields
OP  AM
AP B (2:8)
or
OP — %. 2.9)
Substituting everything gives
2 2 2\( 2 2 712
OF - (0* + ¢ —a®)(a® +c b), (2.10)

ScK

16



which gives the coordinates 6f as

O — V+c—a* (0?4 —a?)(a®+ & -V
B 2¢ ’ 8cK '

(2.11)

17



2.4.2 Centroid

As these are the medians, they bisect the line. Let the bisectdrhit L, let
another hitBC' at R, and let the two lines meet &. Now drop a perpendicular
from F to AB, hitting atP. Drop another perpendicular fro@1to AB, hitting at

Q.
Clearly we havedL = £, andALFP ~ ALFP. This yields

LE LP 1
Therefore, we find
PL - ‘oI
3
1 ——
= 3(AL-4Q)
1/c b+ —a?
- §<§_2—c>' (213)
Thus,
AP = AL-PL
_ ¢ _1fe Pre-a
2 31\2 2
2 2 .2
_ defbza (2.14)

be

18



We find

- 12K 2K
PF = fotCA = —— = —. (2.15)
3 c 3¢

Or, in other words,

(2.16)

P 302—|—b2—a27% .
be 3c

19



2.4.3 Circumcenter

Euler Line: Constructing the Circumcenter

C

_Draw the circle with center at the circumcenter Draw the altitude fromA
to BC, and extend till it hits the circle a/. Draw the perpendicular lines from
the circumcente€’ to the three sides of the triangle.

We find

or_ oM (2.17)

P AM
where
2 2 2 .
o1y L Ay y S (2.18)

2a a

Substituting yields

) 2a 2K SK (2.19)



We have now found the coordinatesiof

c cla®+b—¢2

2.4.4 Completing the proof

Now that we have the three coordinates of the three special points, we compute
and compute and compute.

2.5 A Vector Approach to Euler’s Line

FromA Vector Approach to Euler’s Line of a Triangley J. Ferrer.
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Chapter 3

Euler and Infinite Series:
Wednesday, October 22, 2003

Lecturer: Bill Mance.

We'll mention ¢(2) = %2 as well as some generalizations. The handout
is from An Introduction to the Theory of Numbg(is Niven, H. Zuckerman, H.
Montgomery, fifth edition). Another sourcefs: A source Bookby L. Berggren,

J. Borwein, P. Borwein.

3.1 Power Series Review

We have the following power series expansions:

3
smr = x—a—ka—---
2 4
cosr = 1—%—1—%—---. (3.1

Theorem 3.1.1 (Viete (1500s))Let f(z) = 2V +cn_12V "1+ - - + ¢y with roots
ai,...,ayn. Then

22



Z Q; = —Cn-1
ZO[,L'OZJ' = CN-2
i>j
. :
[[eo = (DY (3.2)
i=1

Note: set of algebraic complex numbers is a field.

3.2 Evaluating((2)

We will prove
Theorem 3.2.1 (Euler).} o, & = &
Proof. Define

p(m)zl——+—.—-~-. (3.3)

Note the above equat~ for all = € C — {0}.

Now, p(x) = 0 if and only if z = kx, k € Z. Implicit in this assumption is
that there are no complex zeros.

Thus, assume we can writéx) as an infinite product:

0= (- (D) (-F) (e E) . es

Remark 3.2.2. It is very importantto take the factors in this order, as the above
is conditionally convergent, and gives a little better decay. This can be formally
justified using Weierstrass products.

Combining in pairs yields

plz) = (1—3?—2) (1—2§;2) (1_3f;2)...

_ 1_x2(i+ L1 +...>+x4(...)+..._ (3.5)

T2 272 327'('2

23



Equating coefficients, and remembering the expansigii20f = 2, we find

xT

1 1 1

§:P+227r2+337r2+.”’ (3.6)
which gives
=1 2
n=1
O]
3.3 Generalizations
Consider a power series
p(z) = 1+ A2+ B2+ 02+ D2+ -+ (3.8)
If the roots ofp(z) area, 3,7, 4, ..., then we have

p(z) (I+az)(1+62)(14+~v2)(1+dz)---
A = atB+7+0+--
B = tho at a time
C = ) threeatatime (3.9)

and so on. We need certain properties to make all the above convergence (for
example, the roots must have certain size properties).

Define

P = a+f8+y+--

Q o+t

V o= a®+p8%44% 4., (3.10)
Then

24



P = A
QO = AP—-2B
R = AQ— BP+3C

V = AT —BS+CR-DQ+ EP—GF. (3.11)

In the finite case, these are due to Newton.
We have
1 1
and
11 1
Therefore,
1 1 1 1
S =) = = 14
4 <14+24+ ) 90’ (3.14)
which gives
1 d
Zﬁ = 5 (3.15)
n>1
Consider

cos(u/2) + tan(g/2) sin(v/2)

) Vv v )
N (1+7T—Cl) <1_7T+Q) (1+37T—9) (1_37r+9) (3:16)

Substituter = £w andg = . Then

cos(zm/2n) + tan(mm /n) sin(xm/2n)

_ <1+n—$m) (1— niﬂ) (1+3nfm) (1— 3nim> (3.17)

25




Let K = tan(mn/n). Then, noting there are nigs in the even terms,

T w22 w33
1+ 20—

— K3+ ... = other side 3.18
2n 22n221 23 N33! + ( )

Collecting gives

1 1 1 1 s
- - o= —K. 3.19
n—m n—l—m+3n—m 3n+m+ 2n ( )
Similarly
1 1 1 1 K*+1 ,
ceeo= 3.20
(n—m)2+(n—|—m)2+(3n—m)2+(3n+m)2+ ANz " ( )
and
1 1 1 1 (K3 + K) ,
_ _ oo = ————~q°. (3.21
—m)P (ntmP Gn-mp @Bnimp s 7 321)

In general, we get something of the forfti)g(n)mPOWer wheref andg are
nice functions. Ifm,n € Z, thenK is algebraic:

sin(mm/2n)  algebraic
cos(mm/2n)  algebrai¢
Thus, all the above sums are transcendental wheandn are integers, as

the algebraic numbers are closed under these operations (algebraic numbers are a
field).

K —

(3.22)

3.4 More Rational Multiples of =

Consider

cos(v/2) + cot(g/2) sin(v/2). (3.23)

Making the same substitutions as before,

26



T w22 w33

T oK T 2N T BNBIK
x T T x T
- (1+3)(1- 1 1 - 1
( +m < 2n—m>< +2n+m)< 4n—m>( +4n+m

Therefore, as before we get

1 LS SR
m  2n—m 2n+m - 2K
1 1 1 (K? + 1)7?
m2  (2n—m)?  (2n+m)? 4In?K?
1 1 | (K? 4 1)mt
- _ e = 3.25
m3  (2n —m)3 - (2n 4+ m)3 - 8n3K3 7 (3.25)

and so on.
Takingm = 1, n = 2 givesK = 1, and we get

1 1 1 T
I _ Lz - 2
1 3 + 5 4 (3.26)
and
1 1 1 3
= 3.27
13 33 * 53 32 ( )
Catalan’s constant is
1 1 1
and we don’t even know if it is irrational, let alone transcendental!
One can show
S N P (3.29)
1222 32 42 12 '

To see this, lef = 3°, ., ;5. Theny S =37 -, 5y ThenS —2- 1S, and

noting S = =, solves the above.

Note many of these are a rational number times

Euler conjectured that(3) = a(log 2)3 + 3log 2, with o, 3 probably rational.
This is no longer believed to be true.

27



3.5 Irrational Multiples of =«

Continuing as before, letv = 1, n = 3, and use the last relations with these
values. This implies thak” = tan(7/6) = \/Lg Therefore, the first relation will
yield

1 1 1 1

m
> 1780 T 6
Thus, here we have amational multiple of v, which is a lot harder to detect.

(3.30)

3.6 Adding Series from Both

Adding series from both expansions gives us (the most recent one and the cotan-
gent one) gives

1+ 1 1 1 L 1 . B K7T+ 7 (3.31)
m n—-m n4+m 2n—-m 2n+m  2n onw '

Unfortunately, the above are not absolutely convergent! Now, if you truncate
each series, then one has finitely many terms, and the above can be justified (a
bit).

28



Chapter 4

Euler and Sums of Four Squares:
Wednesday, October 29, 2003

Lecturer: Brinkmeier.

4.1 History

Starts with Bachet in 1621. We will show that a prime number is the sum of two
squares if and only ip = 4k + 1 (Bachet first claimed this).

In 1685, Fermat claims to have a proof of the above, but again, no proof is
given.

In the 1740s, Euler becomes interested in this problem, which he proves in
1747. Then in 1770 Lagrange, using the ideas of Euler, finally shows that any
number can be written as the sum of four squares.

4.2 Sums of Two Squares

Theorem 4.2.1.A primep is the sum of two squares if and onlyit= 4% + 1.

Lemma 4.2.2 (Leonardo of Pisa, 1202)If x andy are sums of two squares, then
S0 iszy.

Proof. Say

v =a*+b and y = &+ d* (4.2)
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Then

(a®> +b*)( + d*) = (ad + bc)* + (ac — bd)>. (4.2)

Can interpret the above in terms of complex numbers.
O

We will use the method of infinite descent: if you have one solution, we show
that there is a strictly smaller solution (in some sense); this process cannot be
continued indefinitely with integers.

Lemma 4.2.3. For any primep = 4k + 1, there existn, z € Z such thatmp =
22+ 1.

Proof. From Wilson’s Theorem, we knop — 1)! = —1 modp. Thus, in our
case,(4k)! = —1 modp. Then

2k+1 = =2k
2k+2 = —2k-—1
4k -1 = =2
4k = -1. (4.3)

Therefore, we havE2k)!]? = —1 modp. In the above calculations, there will
be an even number of minus signs coming out. O

Now that we knownp = 2%+ 1, we can find (straightforward calculation) that

—1p < z < ip (with possibly a differentn, butz in this range). This implies
2 1,2
m:2+1<‘1p+1<p. (4.4)
p p

Formp = 2% + 4%, p = 4k + 1 we can findu andv such that: = x modm
andv = y modm. We may choose andv so that—im < u,v < Im.

This impliesu? + v? = 0 mod m, which yields that there exists arsuch that
mr = u? +v% If r # 0, thenu = v = 0.

Hence, ifm > 1, there exists an < m such thatp = 2?4 y?, sop = 72+ 7°.

Note we had
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(mr) - (mp) = (u* +v%) - (2% +y7). (4.5)

By Fibonacci’s identity, this is also a sum of two squares, Qay+ yv)? +
(zv — yu)?. Thus, we getp = 72 + .

4.3 The Representation is (basically) Unique

Sayp = a? + b* = 2? + y?, and we have that the congruence+ 1 = 0 modp
has two solutions, sayh.

Sincep is prime anda, b non-zeroa~! andb~! exist (the inverses are multi-
plicative inverses mogd). Then, modp,

0 = a®+ b

a2(b71)2 4 b2(b71)2

(ab™ M) +1

= 0. (4.6)

Thus,ab™! = £h modp; relabelh if necessary so that = hb modp.
Now

pro= (a4 (" +y)
= (az+by)* + (ay — bx)* (4.7)

Using our result that = hb modp, we can find a similar statement concerning
x andy, and we find that one of the two factors above is congruent to zergpmod
Let's assume thaty — bx = 0 modp, or p|(az + by).

Dividing by p? above (be very careful doing such divisions mgdwe find

2
| = ax+by+ay—bx ' (4.8)
p p

Supposeir + by = 0. As a andb are relatively prime (as their squares sum
to the primep), we finda dividesby, soa dividesy. Similarly, one can find that
b dividesx, and we can interchange the rolls(af b) and(z, y). We find that the
only solutions are of the forritx, +y) or (+y, £x).
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Exercise 4.3.1.Show that we are correct above when we state that bx = 0
modp.

4.4 Sums of Four Squares

We have seen that primes of the fodh + 3 cannot be the sum of two squares
(look at what squares are congruent to ripd

Exercise 4.4.1.Show that and 15 cannot be written as the sum of three squares.

So, three squares is not enough to get all numbers. In 1750, Euler discovered
the following identity

(a2 + a3 + a3 +a3) (b3 + b5 + b3 + b7)
= (a161 — szg — Clgbg — a4b4)2 + (Glbg + Clgbl + Cl3b4 — a462)2
+ (a1bg — asby + agby + a4b2)2 + (a1bs + azbs — agby + a4bl)2.(4.9)

Thus, ifz andy are the sum of four squares, so is their product!

Remark 4.4.2. Modern day proofs of this use

( ; ;” ) . (4.10)

The determinant above is the sum of four squares....

Noting that2 = 12 + 12 + 0% + 0% and primes of the form4k + 1 can be
written a? + b? + 0% + 0, we see it is sufficient to write odd primes of the form
4k + 3 as the sum of four squares.

So, we must show that there existsansuch that) < m < p andmp =
a’ + b + ¢ + d?>. We will do this by descent. To show such anexists, it is
enough to show that®> + y* + 1 = 0 mod p is solvable.

We rewrite ase? + 1 = —y? modp. Clearly, modp, 1 is a perfect square. As

. . (4k+3)—1
p = —1 mod4, —1 is nota perfect square (this follows frofa-1) = = —1.

We introduce the Legendre symb(@). If « = 0 modp, (5) = 0. Otherwise,

we have

= e (4.11)
+1 if ais a non-zero square mod

(g) {—1 if a is not a square mog

32



We find (¢) (2) = (%).

b p .

Thus, rewritingz? + y*> + 1 = 0 mod p givesz? + 1 = (—1)(y?) mod p,
implying thatz? + 1 is nota square mog.

So, 22 + 1 cannot be a square. so, we want to find a perfect square which,
when we add 1, is not a square. Look at the list of numbers 1, 2, 3, and so on. At
least one such number will work. There are oﬁg;i squares, the same number
of non-squares, and 0.

We find

mp = a®+ b+ +d* m<p. (4.12)

Let A = a modm, B = bmod m, C = cmodm, andD = d mod m. We
may take—im < A, B,C, D < im. So there exists ansuch that

mr = A*+ B*+C* + D (4.13)

If » = 0, each if0, sop is divisible bym, which contradicts the primality of
p. Thus,r > 0. Therefore

A2+ B?> 4+ C? + D?
m
1.2 1.2 1.2 1,2
Im? 4+ im? 4 2 41
< AV TA AT A (4.14)
m

If r = m, then all these terms have to achieve a maximur‘émf which
impliesthatu =b=c=d = %m modm. Thus,mp = 0 modm?, sor < m.
We have

mr = A’+B*+C?+ D?
mp = a>+b>+cE+d% (4.15)
Multiplying out (using a slightly different version of Euler’s identity for sums
of four squares) gives
mipr = w4 2?4974 22 (4.16)
where
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w = aA+bB+cC+dD = a*+b*+ &+ d*> =0 mod m. (4.17)

Likewise, we findz, y, 2 = 0 mod m. Thus,

pro= w0+ 3+ 7§+ 22 (4.18)

The descent is following in this form: we are probably assuming 1, and
if m > 1, then we can find a smaller

4.5 Later Years

Waring (1770) conjectured that everyis the sum of9 cubes. Wieferich and
Kempner (1912) proved that Waring’s conjecture is true. Hilbert (1909) states
that for anyN, there is a natural numbef N) such that every. is the sum of at
mostg(N) N powers:n = S°9 ¢V Chen (1986) showed that5) = 37, and
others in1986 showed thag(4) = 19.

For 9 cubes, 257 is the largest number that needs 9 cubes. A natural problem
is from some finite point on, how many terms does one need for aach-or
exampleg(4) is 16 (give or take).

Exercise 4.5.1.Is every positive integer the sum of a finite number of squares?

Exercise 4.5.2.Same as above, but can one show that bounded number of squares
work?
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Chapter 5

Euler and Graph Theory: Friday,
November 5, 2003

Lecturer: Corey

5.1 Graph Theory Review

A graphG = (V, E) is a set of vertice$” (the vertex set) and a sét of pairings
of vertices.

If v € V, the degree of is the number of edges leaving

If v € V, thene is incident tov. If v is in two edges; ande,, thene; is
adjacent tas.

A path P in G is a sequences of edgés },<,, such thak; is adjacent te; . ;.

The vertex sequence éf is the sequencéy; } such that; is incident tov;.

If i # j impliese; # e;, then the pathP is simple.

If v, = v (the last vertex is the same as the first), tiieis closed.

If P is simple and closed, thef is a circuit.

5.2 Bridges of Koenigsberg

Question: can you walk around town, crossing each bridge exactly once, ending
up where you started?

Two islands in ariver] | — — — —[ |, river flows around the two islands,
two bridges from each side of the first island to the opposite shores; on the second
island, one bridge from each side to the other banks.
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Gives rise to a graph: four vertices, say 1, 2, 3, 4.
An Euler Circuit is a closed path ifr (the graph) that uses each edge exactly
once.

Theorem 5.2.1.1f an Euler Circuit exists inG, then all vertices have even degree.

Proof. Start at a vertex in the Euler Circuit: every time you come to another
vertex, you contribute two (once coming in, once leaving). In the end, when you
have the last edge, since itis a closed path, you end up at the original vertex, which
now gives everything having an even degree. O

Theorem 5.2.2 (Euler).If G has all even degree vertices, then there exists an
Eulerian Circuit.

Proof. We proceed by induction on the number of vertices. Assume you have at
least two vertices (otherwise trivial). The case of two vertices is trivial.

We proceed by strong induction. Ta&ay path such that you end back where
you started. Such a path exists as all vertices have even degree. Start at a
and walk. Every time you hit a new vertex, you leave it; thus, you decrease
their degrees by an even number each time. Eventually, as there are only finitely
many vertices, you must return to where you started. Why? Each vertex has even
degree, so when you come in and leave, you decrease its degree by 2. If you
haven't returned yet, then this vertex is no longer available if you've used up all
its edges. As we keep decreasing the number of edges, eventually it will work.

Then, by strong induction, we can find Euler Circuits for each connected com-
ponent ofG minus the path we've just constructed. Then we just piece those
pieces to the original path. O

Remark 5.2.3. We count a self-loop as two edges; a self-loop is an edge from
tov.

5.3 Fleury’s Algorithm

We describe Fleury’s Algorithm to construct an Eulerian Circuit. The input is a
finite connected grapy’ with all vertices of even degree.

Step One:Start at any vertex. Let V'S = {v}, andES the empty sequence;
V' S stands for the Vertex Sek;S stands for the Edge Set.

Step Two: While there are edges incident with

If there is no edge incident with, stop.
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If there is exactly one edge, say= {v, w}. Add the edge to ES, addw to
V'S, deletev from the graph, and now move on and consider

If there is more than one, choose one edge such that its removal does not
disconnect what is left; we claim that there is always such an edge.

5.4 Euler Characteristic

Definition 5.4.1. A polyhedron is a three-dimensional figure whose faces are poly-
gons, fitting together well.

Definition 5.4.2. A polygon is a simple closed curve with straight sides, non-
intersecting, divides the plane into two sets.

We often want to deal with convex figures. For example, we’ll deal with a
polyhedron as the convex hull of a set of points in the plane.

Let F be the number of faces of the polyhedron,A&be the number of edges,
and letV be the number of vertices.

Theorem 5.4.3 (Euler). For any convex polyhedron,

F-E+V = 2. (5.1)

This was known to Descartes (1639); Euler rediscovered this (1751). We give
Cauchy’s proof (1811).

Proof. Take a face-off. We haven’t removed any edges or vertices — we've just
removed the interior of a polygon. There is now a whole, and we have something
topologically equivalent to a cell. We've decreadédy 1, and everything else
unchanged.

We now flatten everything out, and triangulate. Now that we have something
flat, we just need to show’ — £ + V' = 1. Then start removing triangles and
boundaries. See what happens in each case. O

Consider polyhedra with regular faces, and the same number of edges meeting
at each vertex. Let be the number of edges on each face) le¢ the number of
edges meeting at each vertex. On finds= 2F, andbV = 2E. AsF—E+V =
2, a little algebra yields

1 1

1 1

- = —. 5.2
« 27T E (®-2)
There are only so many answers: the five answers are the Platonic solids.
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Chapter 6
Wednesday, November 12, 2003

Lecturer: Dan File

6.1 History of the Fundamental Theorem of Alge-
bra

First was d’Alembert (1746) — he was interested in integrating rational function.
A consequence of the FToA is that any polynomial can be separated into linear
and quadratic terms, so to integrater, we can succeed using partial fractions.
Euler became interested in this problem: Euler worked on the quartic and
quintic. For the quartic, Euler showed that there was an x-intercept. He was
relying on the fact that if you have roots (i € {1,2,3,4}), then—(3; - -- 3,)?
is negative. This is fine if thgs are real or in complex conjugate pairs, but had
some trouble with the quntic.
Nicolas Bernouli claimed a certain quartic was irreducible dgbut Euler
found a factorization:

ot —4ad 4222 fdr+4 = (mz—\/2i VA +2VTz+ (11 4+ 277+ V7)),

(6.1)
where above the two factors come from taking #heign each time, or the
sign each time. Note factoring a quartic into two real quadratics is different than
trying to find four complex roots.
A function f is analyticon an open subsdt C C if f is complex differen-
tiable everywhere o®; f is entireif it is analytic on all ofC.
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6.2 Proof of the Fundamental Theorem via Liou-
ville

Theorem 6.2.1 (Liouville). If f(z) is analytic and bounded in the complex plane,
then f(z) is constant.

We now prove

Theorem 6.2.2 (Fundamental Theorem of Algebra)Let p(z) be a polynomial
with complex coefficients of degreeThenp(z) hasn roots.

Proof. It is sufficient to show any(z) has one root, for by division we can then
write p(z) = (z — z0)g(2), with g of lower degree.
Note that if

p(2) = an2" + an12" -+ ag, (6.2)
then agz| — oo, |p(2)| — oco. This follows as

Un-1 4+t % .

ZTL
Assumep(z) is non-zero everywhere. Then Iookﬁg, with |z| = R. Since

P(z) # 0forall z, we findﬁ is bounded (look altz| small and large separately).

Thus, - is a bounded, entire function, which must be constant. This, is

constant, a contradiction which impligéz) must have a zero (our assumption).
O

(6.3)

p(Z) = 2" an +

6.3 Proof of the Fundamental Theorem via Rouche

Theorem 6.3.1 (Rouche)lf f andh are each analytic functions inside and on a
domainC with bounding curvéC, and|h(z)| < |f(z)| ondC, thenf and f + h
have the same number of zeroglin

We now prove the Fundamental Theorem of Algebra:

Proof. Let
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p(2) A2+ ap 12" 4 4 ag
f(z) = a,z"
h(z) = an 12" +---+ap. (6.4)
Take
R > |an—1|+" +|a0| (6 5)
|an| .

Then|h(z)| < |f(2)| on the boundary of the circle centered at the origin of
radiusRiR. As clearly f hasn zeros, we are done. O

6.4 Proof of the Fundamental Theorem via Picard’s
Theorem

This proof is due to Boas (1935).

Theorem 6.4.1.1f there are two points missed in the image of an entire function
p(z) (ie, 3z # 2z such that for allz € C, p(z) # z; or z3), thenp(z) is constant.

We now prove the Fundamental Theorem of Algebra:
Let p(z) be a non-constant polynomial missing two points. Without loss of
generality, we may assumez) is nevero.

Claim 6.4.2. If p(z) is as abovep(z) does not take on one of the valuggor
ke N.

Proof. Assume not; thusjz, € C such thatp(z;) = 1. If we take a circle
centered at the origin with sufficiently large radius, thét{z)| > 1 for all z
outside some circl®. Thus, each; € D. By Bolzano-Weierstrasss, as all the

pointsz, € D, we have a convergent subsequence. Thus, wehave z'. But
p(z') = lim p(z,) = 0. (6.6)

Thus, there must be sontesuch thatp(z) # 1. As p(z) misses two values,
by Picard it is now constant. This contradicts our assumptionztfigtis non-
constant. Thereforg,z,) = 0 for somezy. O
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Remark 6.4.3. One can use a finite or countable version of Picard. Rather than
missing just two points, we can modify the above to work if Picard instead stated
that if we miss finitely many (or even countably many) points, we are constant.
Just look at the method above, givés We can then find another larger one,

sayé. And so on. We can even get uncountably many such points by looking at
numbers such a5 (using now the transcendence©fs 1).

6.5 Proof of the Fundamental Theorem via Cauchy’s
Integral Theorem

This proof is due to Boas (1964).
Theorem 6.5.1 (Cauchy Integral Theorem).Let f(z) be analytic inside on on
the boundary of some regian. Then

f(z)dz = 0. (6.7)
oc

We now prove the Fundamental Theorem of Algebra:

Proof. Let p(z) be a non-constant polynomial and assyi® = 0. Forz € R,
assume(z) € R; in other words, we are assumip@:) has real coefficients.

Without loss of generalityp(z) doesn’t change signs far € R, or by the
Intermediate Value Theorem it would have a zero.

27 do

This follows from our assumption thatz) is of constant sign for real argu-
ments, bounded above froin We also have

1 dz 1 Zn—l
i oy L yaTony 6.9
i /Z|:1 2p(z + 271) i Jismr Qz) (6.9)

where

Q(z) = 2"P(z+2z7Y). (6.10)

If z2#0, Q(z) # 0.
If z =0, then
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pz4+2Y = az+z "+
pz+z27) = 2 (an) A+
= ap+z(--). (6.11)

Thus,Q(z) = a,, which is non-zero.
O

Remark 6.5.2.1f p(z) doesn't have real coefficients, then consider) = p(z)p(z).
By differentiating, one can pick off the coefficients.

6.6 Proof of the Fundamental Theorem via Maxi-
mum Modulus Principle

This proof is due to C. Fefferman (1967).

Theorem 6.6.1 (Maximum (Minimum) Modulus Principle). No entire function
attains its maximum in the interior.

We now prove the Fundamental Theorem of Algebra:

Proof. Assumep(z) is non-constant and never zeed\/ such thatp(z)| > |ao| #
0if |z| > M. Let z, be the value in the circle of radiu¥/ wherep(z) takes its
minimum value. All we are using is a continuous function on a closed, bounded
domain attains its maximum (minimum).

But |p(20)] < |p(0)| = |ao|. Therefore|p(zo)| < |p(z)| forall z € C.

Translate the polynomial. Let(z) = p((z — z0) + 20); letp(z) = Q(z — zp).
Note the minimum of) occurs at = 0: |Q(0)| < |Q(z)| forall z € C.

Q(2) = co+ ¢zl + -+ 2", (6.12)

wherej is such that; is the first coefficient (aftet,) that is non-zero. Note if
co = 0, we are done.
We may rewrite such that

Q(2) = co+c;2) + 27TR(2). (6.13)

We will extract roots. Let
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re® = —2, (6.14)

Cj
Further, let
21 = rie’. (6.15)
Lete > 0 be a small real number. Then
Qlez) = o+ ;2 + T R(ex))
|Q(ez1)| < ‘CU+CJEJZ§‘ + @z P R(ezy)|
lco| — €|co| + €27 TN, (6.16)
whereN is chosen such thal > |R(ez;)|. Thus,
|Q(ez1)] < |eol, (6.17)
but this was supposed to be our minimum. Thus, a contradiction! O

6.7 Proof of the Fundamental Theorem via Radius
of Convergence

The proof below is from Velleman (1997).
We now prove the Fundamental Theorem of Algebra: As always) is a
non-constant polynomial. Consider

f(z) = ﬁ =by+bz+---, (6.18)
and
p(z) = apz" +---+ag, ag#0. (6.19)

Lemma 6.7.1.3c,r € C such thatb,| > cr* for infinitely manyk.

Now, 1 = p(2)f(2). Thus,apby = 1. This is our basis step. Assume we
have some coefficient such that| > cr*. We claim we can always find another.
Suppose there are no more. Then the coefficient of in p(2) f(2) is
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a’Obk+n + albk—i—n—l +---+ a'nbk‘ = 0.

(6.20)

Thus, as we hav;| > ¢/ in this range, we have the coefficient satisfies

lag|r™ + |ay|r™ P+ -+ ana|r < ay

This will give that

|aobktn + - -+ Ap_1bpq1]

b =
|an]
|aobrin| + - + |an1bria] k
>~ cr
[
for sufficiently small.
Letz = 1. Then
! ||
ozt = T >
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Chapter 7
Wednesday, November 19, 2003

Lecturer: Rafal Pikula

7.1 An Interesting Sum

Theorem 7.1.1.

1
> = 1. (7.1)
mr — 1
m,n>2
Proof. Let
1 1 1

By the Geometric Series Formula,

1 1 1
l=—-+-4+=-+4--- 7.3
2+4+8Jr (7:3)
Therefore, subtracting yields
1 1 1 1 1
—1=14=-4+=4+=4+=+=+--- 7.4
x Tyt tetotgt (7.4)
Similarly, we know
1 11 1
T E 7.
5 3—1—9—1—2 + (7.5)
Subtracting again gives
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1 1 1
r—1—= =14—-+-4+=-+-—+-- (7.6)
Again by the Geometric Series,

1 1 1 1
e 7.7
4 5+25+125+ (7.7)

Subtracting again gives
1 1 1 1 1
—l-— - =144+ —+--- 7.
x 573 totott (7.8)
Continuing in this manner gives

1 1 1 1
-]l - - - - — — — ... = 1. 7.9
¢ 2 5 6 9 (7.9)
This implies
1 1 1 1 1
g—1=14+-+=+-+=-+-+-- (7.10)

2 2 5 6 9
Note the RHS’s denominators are all numbers with denominatotrsf the
formm™—1 with m,n > 2. Subtracting: — 1 (Equation 7.10) from the expansion
of x gives

1 1 1 1
l = c4+-4+-4—+--- 7.11
3 * 7 i 8 * 15 - ( )
Of course, we are subtracting divergent series.... O

Remark 7.1.2. You need to be careful in trying to add convergent factors, to make
the series convergent.

7.2 Summation Methods

Consider

[e.9]

> a. (7.12)

n=0

We can consider the Power Series Method: Assume
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i apx" (7.13)
: ). If

the function is regular in the region (open, connected) that contains the origin and
the pointx = 1, then we define

> an = f(1). (7.14)
n=0

We call convergence of sums of this tyfeconvergence.

Another type of summation is to again consider the power s@rjesz™. Let
x = ﬁ SOy = :1:+1 Notey = = corresponds te = 1.

Assume)  a,z™ converges for sma|lz|. Then

vf(x) = ianxnﬂ

= 2 (n+m) yr
m=0 m

n=0

= Ly ()

n=0

- 25l

k
k
_ B _ 71
kz:% bky ) bk’ % (n) ap, ( 5)

If the above converges far= % say toh(y), then we define

ian - h(%) (7.16)

n=0
We call this(£, 1)-summation. To evaluate gt= 1, we must study
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by,
> ot (7.17)

7.3 Examples

1—-1+1—-1+1—-1+--- (7.18)
Using £-Summation:
i(—l)”x” = ! : (7.19)
- 14+

Thus, asf(1) = 1, we obtain

> (=)t = 2. (7.20)

n=0

Now let us usg E, 1)-Summation. We need to determihg We findb, =
ap = 1, and

b=y (Z)(_l)k =0 if n>1. (7.21)
k=0
Therefore,
=, b, 1
> o = 5 (7.22)
n=0
Let’'s consider
1—-24+4—-8+--- (7.23)

By £-summation,

o0

D (-1)"(2x)" = L (7.24)

o 1+ 2x

As f(1) = 5, we get this sum ig.
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Using (£, 1)-summation, we géiy = ap = 1, by = —1, and in general

by = > (Z)(—Q)k = (1—2)" = (—1)~ (7.25)
k=0
Thus,
1—2+4_8+...:§:<2—n1+)1" :%, (7.26)
n=0

as we have a geometric series.

7.4 Another Example

Consider

14244484 (7.27)
By £-Summation, we get

o0

d oot = —. (7.28)

n=0

Thus, asf(1) = —1, our initial sum is—1.
Using (F, 1)-Summation, we get

by = Zn: (Z)2k — 3", (7.29)

Thus,

= by, I <= /3\"
Zﬁ252(§) = 0. (7.30)

Remark 7.4.1. In the above, if we usé-Summation to handle thgf)", we get
—2, which regains the-1 from before.

Let's try using(E, 1)-Summation on(2)". We now get
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"L /n\ 3 1/5\"
o= (k) T = 3 <§> . (7.31)

k=0

We then substitute, and g&f 522+, and see we have things liK&)". If we
apply the Geometric Series now, we get again.

7.5 Related Sums and Values

Consider

a0+a1+a2+a3—|—---+ (732)
and

ao+0+0+ay+0+0+0+az+--- (7.33)
While this will not change the value of the sum if it converges, if we are using
the new convergence methods on divergent series, we will get new results.
Specifically, consider
1-14+1—-1+4--- (7.34)

We showed the above ; Now look at

1—-1+0+0+1—-14+0+0+1—-1+0+0+--- (7.35)
Now we have something like

l—z+at a2 +2° 2% +... (7.36)
which gives
11—z 1

As fi(1) = §, we've obtained a new value!
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7.6 Another Example

1—114+20 -3+ ... (7.38)
Let

flz) = 1 -1z +22% - 3l2° + - - (7.39)

Thenf(1) is the value of our original sum. Le{x) = = f(x). We have
g(x) = fl@)—zf(z)
= 1—2lz+3lz* —4la® + ... (7.40)
Consider the combination
22g (z)+glx) = 2*(1—-2a+32*— ) +z—2°(1 -2 +3l* —..)
T. (7.41)

This gives the differential equation

2°g'(z) + g(z) = . (7.42)
We have
(g(m)e_l/x)/ = 1'6_1/:5, (7.43)
x
which yields
z —1/t
g(zr) = el/x/ et dt. (7.44)
0

The integral is well-defined far positive. We have

o) = 28 _ e/ / e (7.45)
0

x x t

Substitute by = —*—. This yields

1+zw”
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flz) = /0 " aw (7.46)

Letu = 1, sot = 1. We now have

/Ooe—udu _ /Ooeudu_/1 (l—eu)du_/l/x@_i_/l/x(l—e”)dy‘
1z U 1 U 0 U 1 u 0 u

 — 1\" 1
= —y—log— D L e . 7.47
o og$+;< ) (w) — (7.47)
Therefore,
f(1) = e- _7+i =D") & 506347, (7.48)
nzln-n!

7.7 Cesaro Summation

Lecturer: Steven Miller
Let us consider the partial sums of a series:

n

Sn = Y an. (7.49)

k=1
Then we define Cesaro Summation by

lig SLT S (7.50)
n—0o0 n
Note for
1-14+1-14+1-1+--- (7.51)

we havesy, = 0 andsy,; = 1. Thus, the average of the partial sum% i
n = 2k, and; + L if n = 2k + 1. Therefore, we see again that this series sums to

N =
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7.8 A Nice Integral From Euler

1 [%S)
/ x Vdr = Zn_”. (7.52)
0 n=1
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Chapter 8
Wednesday, December 3, 2003

Lecturer: Ari

8.1 Euler and Mechanics

Euler is often attributed as the first to solve a differential equation. He used dots
for time derivative (a la Newton’s Fluxon Notation). Uses very modern looking
notation. He proceeds through a treatise of Mechanics (vibrations of strings, for
example).

See EulerMechanica sure Matus Scientia Analytice

8.2 Preliminaries

A body B is a collection of points\’ = (z1, 2, z3); we will assume the body is
smooth (a smooth manifold) which can be embedded in Euclidespace.

Newton did mechanics through points: his notation and framework didn’t gen-
eralize well. Euler's work put mechanics on a solid foundation, and increased the
complexity of systems that could be mathematically handled.

Let By, 5, B3 be abasis. We will have a reference configuration at time):
call this B.

A motion of the body is a map; : By — B; such thatz(t) = ¢,(X) =
»(X,t). If we had two pointsX;, X, € By, we would haver; (), z(t). Wi
assume these motions are invertible; thiis= ¢! (z, t).

)
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8.3 Lagrangian Formulation

Lagrange invented the Calculus of Variations — Euler was independently working
on the subject, but held off on publishing so that this young man from Turan could
get his name out. Lagrange also wrote a beautiful appendix to Euler’'s Algebra.

Lagrange’s description of mechanics is as follows: start with a reference coor-
dinate system. We’'ll have poinf§ evolving to pointsy(X,¢). We get velocities
v(X,t) = 20,

For the Eulerian formulation, we havwe X, t) = 0(¢(X,t),t) = v(x,t).
Thus, all of these equéP?.

A present configuration bas{s;}, i = 1 to 3. We are suppressing the sub-
scriptt. We adopt Einstein’s summation convention, which states any repeated
subscript is summed over. Thus= ). z;e; = xe;.

8.4 Euler's Theorem on Rotations about a Point

From Whittaker (1927, possibly Analytical Mechanics)

Theorem 8.4.1.Any rotation about a point is equivalently a rotation about a line
through that point (in three dimensions).

Consider a rigid body in an initial configuratidB,. There is a point in this
body, X, such that, wherB, — B, z is fixed by this motion. Or, for alt,
x = ¢,(X) = X. For arigid body, the distance between any two point8jns
equal to the distance between what they are mappedp.in

Thus, a rotation about a point holds a point fixed; a rotation about a line holds
a line fixed. We look at two snapshots: look at two times, gagndt;. Then if
we look at two snapshots such that it is a rotation about a point, one can also show
that it is a rotation about a line.

Proof. Let X be a point in the body fixed by the rotation, I&{ and X, be two
fixed points in the body. This is all at tinte

At time ¢, we now have pointX’, X, X). As X is the fixed pointX' = X.

Consider the plane thatis perpendicular to the plane contaikigand X X
and bisects the angl€] X X;. Similarly for X, X5, X;.

There should be a unique line of intersection of the two planesCLia¢ on
that line. So the anglé' X X, equalsC X X1, and the angl€’ X X, equalsC' X XJ,.
This follows from the definition of”, as it lies in both planes which bisect.
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Look at the four pointg’, X, X,, X. Rotate these points abodt We know
X; and X, go into X and X, respectively. Then the lin& C' must be mapped
into itself, and this gives us an entire fixed line.

If the two planes are co-incident, it is trivially modified. O

If we let ¢ty approach zero, this line becomes the infinitesimal axis of rotation.
This is useful in many applications.

Remark 8.4.2. We can prove this using a more modern formulation. Since rigid,
all distances remain the same. Thysg,can be extended to an isometry of three
dimensional space. Thus, the whole space rotates with this motion. Thus, it
should be an element 6fO(3), the group of three dimensional rotations. Thus,
o1, € SO(3). We just need the simple result that such a matrixhas an eigen-
value, which gives us a line of symmetry. This follows from the eigenvalues occur
in complex conjugate pairs, and are of modulus one. Thus, either all eigenval-
ues are real (and since the determinant is 1, at least one eigenvalueorsip
eigenvalues are modulus one complex conjugates, and the third is 1.

8.5 Co-Rotating Coordinates

Euler introduces three angles®,y. We will have rotations of each of these
angles, and consider

e = QP)QOQW)E: = QE;. (8.1)

These are called the Eulerian angles, and are given explicitly as follows. We
represent these rotations with respect to the fikedasis. Let

cosy —siny 0

Q) = siny) cosy 0 |. (8.2)
0 0 1

This is a rotation abouk’; by an angle). This gives

¢, = cosE; +sinyk,
ey = costhEy —sinyEy
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Now we look at@(6), and we represent it with respect to the} basis. In
this basis, it is a rotation abod, and we find

cos# 0 sinf
Qo) = ( 0 1 0 ) (8.4)

—sinf 0 cosf

This yields
e/ = cosfe] —sinfel
ey = €y
e = cosbey + sinfe]. (8.5)

Now we considef)(¢), written in the{e”} basis. We now rotate aboeff. We
have

1 0 0
Q@) = | 0 cosp —sing |. (8.6)
0 sing cos¢
Expanding we obtain
e = €
ea = COS ey — sin gey
e3 = cospe; — sin gey. (8.7)

Composing all the rotations, we find that e,, e5 are related t&;, Es, E3 by

cos f cos cos @ siny —sinf
QO,0,v0) = sin ¢ sin @ cos ) — cos ¢sinty  sin¢sinfsiny + cospcosyy singcosd | .
cos ¢ sinf costy — sin¢siny cos¢psinfsiny — sin ¢ cosy cos ¢ cos b
(8.8)

€1 E1
( e ) = Q(0,0,7) ( Ey ) : (8.9)
€3 E3

Specifically,



Angular velocity isw = ¢e! + 0el, + 1) E5. This leads to

w1 —sin @ 0 1 zﬂ
Wy = cosfsing cos¢p 0 0 |. (8.10)
ws cosfcosp —sing 0 b
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Chapter 9

Euler and Fountains: Thursday,
January 15

Lecturer: Seth Hulett

Historical and social note of Euler. Books says he’s the master of us all (master
of physics), Euler has been called in many circles a second rate physicist. Will go
from an articleEuler and Fountains of Sanssouxy Michael Eckert.

Some of the examples used against Euler: didn’'t take into account friction
in dealing with some fountains. Euler was part of the project for a few years;
during the entire rain of King Frederick, the fountains were never successful. It
wasn't till later (steam engines and metal pipes) that it worked. Steam engines
were originally proposed, but the king didn’t want to spend the money on steam
engines. Also, they used wooden pipes rather than iron pipes.

Before Euler, pipes burst at bottom. Wasn't till one trial run before Euler was
involved: hollowed out trees and coated with metal on the outside. Then didn't
burst on the bottom.

Still led to many physicists making claims such as "Euler didn’t know conser-
vation of energy" or "Euler’s theories on fluids didn’t lead to practical answers."

This paper explores whether or not Euler's knowledge was sufficient to build
a system that would work. Eckert looked into the history. In WWII, much of the
history of the building was lost, but he was able to reconstruct some of the history.
Euler wasn’t involved until after the fountains were somewhat successful, after a
great flood of rain.

Have a river that flows, have a castle with fountains. Castle is on a higher
ground. Had to raise the water to the level of the castle. Wanted the water to drop
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100 feet at the castle. The river is not next to the castle — built a windmill to pump
the water up. This failed (only one was somewhat successful right before Euler).

One semi-successful day: lots of rain, helped fill the reservoir up at the castle!
Worked for half an hour or an hour. Pipes brought water up the mountain to the
castle, about 150 feet.

King wanted grandiose fountains (to be better than Versailles) but wasn’t will-
ing to spend the right amount of money. Euler never brought up the cost factor.
Euler might have assumed the pipes are built out of metal (lead), so they wouldn’t
burst.

Other great fountains of the era used metal pipes and not wooden pipes. Why
are these historians of science saying Euler was a second rate physicist?

During Euler’s communication, he described what he thought the pipes should
be. In the article, on page 458, is a depiction of the system.

Euler assumed constant pressure to fill the reservoir. Many terms in the equa-
tion don't seem to match with the diagram; certain variables were extrapolated
from the diagram. Bottom has 7 times more pressure than top (Euler wrote this
down, though others thought that it was the other way around). Euler knew this
was hydro-dynamical not hydro-static. Pressure at the bottom is much higher than
one would think.

One of the concerns of historians is that Euler ignored certain things / his
theory wasn't practical. Euler, in his letters to the king, asked that if they change
anything (about the lead pipes), please let him know. Euler was extrapolating
from some of the Versailles fountains. Euler wanted to work, was doing some
experiments. Euler was put in charge of many administrative tasks. While he
might play with math for fun (manipulating infinities), he was far more careful on
the practical, applied calculations.

Another part, not dealt with this: Euler’s paper on ballistics and gunnery was
useless to the practical person. The way the first computer was funded was to
come up with firing tables / ballistic tables. Every variable from wind, tempera-
ture, gunpoweder temperature, et cetera: needed a different table for each combi-
nation. Euler’'s paper only worked for those cannons he studied: even the hardness
of the ground influences greatly the tables. A historian not knowing the science
well enough can look at Euler’'s book and say it's useless; however, it probably
would not have been published or used back then if it didn’t work.

The equation is
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p= (k—y)go+ (b—r)gp (1

w,, dw
_ p_p>_a2

?dr
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Chapter 10

Thursday, January 29th, 2004
Euler and Continued Fractions

Lecturer: Dan File

10.1 Series Expansions

This talk is based on a translation by Dan File of a paper of Euler on continued
fractions. A generic continued fraction is of the form

at—— (10.1)

wherea, b, c,d, --- € N. We have convergents (truncating the continued fraction
after a finite number of digits). We have

1
U < T (10.2)

Y

P1 q1 b
We have relations between the numerators and denominators:

Pn = QuPn—1+ Pn-2
qn = QnQn-1 7+ qn—2- (103)
This implies that
Prln-1 — Pn—1qn = (—1)"7% (10.4)
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this implies, in particular, thal,,, ¢,) = 1.
Direct computation gives

anrl _ Pn—1 + an+1pn (10 5)
Qn+1 Gn—1 + Any1qn
We have the following
Po = a
p1 = pob+1
P2 = pic+Dpo
ps = p2d+pi (10.6)
and
@0 = 1
@ = b
@2 = qc+q
3 = Qd+aq. (10.7)

Looking at successive differences gives

qn+1 qn qndn-1

-1 n—1
Pt Po_ (2D (10.8)

Another way of writing this is

Do
pu— — a
4o
1
& — a _|_ -
q1 qoq1
1 1
i R . (10.9)
q2 qoq1 q192

and so on. Thus, we are getting series expansions, and this series converge because
these denominators grow exponentially (at least as fast as the Fibonacci numbers).
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10.2 Another Perspective

What if we have an infinite series
s=———=+—+—-—-, «a,0B,70€Z. (10.10)

From our earlier results, matching gives

gona = «
G = B
4293 = 7. (10-11)

We setyy, = 1, and then find thag, = o, ¢» = g, g3 = %7. Alternatively, we have

@ = «
B
QP = -
(0%
oy
43 = —
! B
8o
q = —
ay
e
q5 = 36
o
Qrye
Using our earlier charts for conversion, we find that
b = 41
42 — qo
C =
q1
qd = B0 (10.13)
q2

Sinceq, = o, we haveb = a. Theng, — gy = ¢q1 = %. As ¢, = a, we have

thate = 20 — b2 Asd = ©-9 we need to find; — ¢, which isjust”;—f.

Thus,d = “2(g53).
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Collecting our results gives

b =

C =
d =

(& =

a?y?(e - 0)
3252

The pattern is clearer if we look at every other:

f =

b = «
a’(y = B)
T TR
a’y%(e - 9)
f 6252
and
0 —«
c = o7
2
o —
. = ﬁ(og 7)72'
Re-writing gives
b = «
Fd = o(y—p)
F8f = a’y(e—9)
FoCh = o’y (n—()
and
a’c = f-a
a*y’e = [*5—7)
PPl = B¢
oz27262n2i _ 5252§2(9_77)-
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Remember we had .

S:O+b+ — (10.19)
as we are taking = 0. Thus, we have o
1
. (10.20)
87
b—l_ 5 04252
2 O
B4d+
2.2, 0239267
a=7y e+ 2
3262 f+..
Now we do our big substitution
1
2
87
o+ 04252
(ﬁ_a)—i_ 5 252 2
—)+
7 042’y2(6 5)+
(10.21)
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Cancelling gives

(v—=0)+ i
(0—7)+

52
(e—0)+"-.

(10.22)

We now have great continued fraction expansions, but these continued fractions
are no longer simple.

10.3 Example:log?2

Consider o111
821—§+§—Z+g—"'210g2. (1023)
In this example,
a=1 =2 v=3, 0 =4, ... (10.24)
This gives
1 12
=1+ : (10.25)
log 2 14+ — 2
|43
|4
14

1

For this, we trivially went fromog 2 to Tog3
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10.4 Example:}

We have .11
521_§+5_§+...:£ (10.26)
We obtain
4 12
= 14+ 5 (10.27)
3
T 2+
52
2+
24,
10.5 Example: Another Method
Consider 1 1 1
R e (10.28)

In this case, note that we have a common factor between adjacent terms. We have

1
s = e (10.29)
Clb -+ )
(be—ab)t+ o
We can do some cancellation and factoring, and obtain

1 b
~ et  —— (10.30)
as —

(c a)+(d—b)+--
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For example, consider

log2 = 1— - - — = ...
8 53 4"
log2 -1 = —ryb b1,
8 - 27371

2log2—-1 = — + - +--- (10.31)

Now substituting into the previous gives
1 L2
= 2 10.32
2log2 — 1 +2 428 ( )

234
24",
In the taxonomy of continued fractions, this is similarjtoSimilarly, we have
s 1 1
= 1—-—Z43+Z_
4 3 * 5
E —1 — _1 + 1 - 1 +
4 3 5 7
Ty 2.2 2
2 3 3.5 5.7
T 1 1 1 1
——— = = — 4 — = 10.33
4 2 3 3.5 * 5.7 ( )
Similarly as before, we find
Tl : (10.34)
4 2 3 + 1'?‘? - '
2T
24" -
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10.6 Example: Yet Another Method

Consider b d
R A B A (10.35)
We find
N a2b
as = «
ac3?
by—c[+ ~
y—cb O—dyt -
(10.36)
For example, consider
1 2 3
S:I_§+§_... (10.37)

In some sense, we can interpret this%aghus, inverting% to 2 we get

(10.38)

2 = 1+

4
30
Ot —15 15

This collapses to the fraction

2.12.2.4.32.4.6-5%2.6---
2 =1 10.
+1.3.22.3.5.42.5.7.62... (10.39)

10.7 Another Variety of Examples

Let
1 1 1 1

§ = —— —

o af TaBy  aByo

70

+oe (10.40)




One can show

1 «
: 1+
’ (e vey
(10.41)
We have
1 11
c T T iTia T Tas”
We find that
e 1
— 1+ —— (10.43)
6_1 1"‘ 3
2+ T
3+
4t
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Chapter 11

Thursday, February 5th, 2004
Euler and ((s): some formulas

11.1 Definition of {(s)

Lecturer: Warren Sinnott

A good survey article is by Ayoulkuler and the zeta functiofirom around
1975. Another is by WeilNumber Theoryor something like that); other good
sources are Davenporfdultiplicative Number Theory

Thezeta functions defined by

which converges for real > 1 (and complexs with (s) > 1); thealternating
zeta functior(.(s) is defined by

which converges for real > 0 (and complex with R(s) > 0).
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11.2 ((2),¢(4)

Around 1700, a classical problem was to evalugtg” | 5. Similar sums had
been evaluated, for example,

(11.1)

1 1
log2 = 1—-+ 4_1+

1
23
If we want to approximate the sum g; one needs many terms (summing< x
gives an error of sizé); for example, Stirling did nine digits, the first eight being
correct.

Euler was born in 1707; Euler tried to find methods to improve ways to calcu-
late this sum. He invented many ways to speed up the convergence of this series.
One such method is the Euler-MacLauren method;f(ef be analytic, and say
we want to evaluat® ", ; f(n). Inthe end, Euler in the 1730s calcula}es—; to
20 digits; doing this naively would take an enormous amount of time!

In 1734, Euler made a breakthrough and calculated exact values not just for
this series, but for series of the forfm —z. We have

o0

1 2
> = %

n=1
=1 d
— = —. 11.2
— nt 90 ( )
Euler started with
) I T 1
Slnx:m—§+a—ﬁ+--- (11.3)

It has zeros at = n, n € Z. He guessed that maybe we could factor and get

2

sing = ni[l@—%) (1+ =) = xi[l<1— nfﬂ). (11.4)

Comparing with the expansion fein z, we find that

o0

: 1 3 1 5
81nx:x—zn27r2-x+ Z oo S (11.5)

n=1 n,m
1<n<m
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Thus, comparing coefficients gives

oo

1 1
-3 = (11.6)
— n2m? 6

which gives our sun}” & = %2 For thex® term, we have

1 1
—_— = — 11.7
Z n?m?2mt 120 ( )

n,m
1<n<m

We can rewrite and obtain

=1 =1 =1 1
(£3) (E%) -LEegas  wo
n= m= = 1;;:2777,

Using our result for) # simple arithmetic give$ | 1%4 = g—g It gets harder to
go for thex” term and higher; Euler did up to= 34 (just the everks) by hand!

11.3 Another Approach

x3 1'5 o0 .T2k+1
i - 4= L
e T ;( o
_— (1 _ n%ﬂ) ; (11.9)
n=1

taking the logarithmic derivative of the product formula leads to the series expan-
sion of the cotangent:

= C(2k
zcotx =1 —22Mx2k
k=1

T2k
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To see this, note that we would have

o0

1 —2z 1
ter = - :
cotx x+;1—n§jr2 o2
1 oo oo 1’2k
= -2 -
- Z Z e
o 2k+2
reotr = 1 —zl;mg(zmz). (11.10)

Thus, if we can find a nice Taylor expansion forot , we would have formulas
for ((2k + 2). Shifting variables, it is enough to study

> 2k
veotr = 1-23 To((2k). (11.11)
s
k=1

Unfortunately, it isn’t pleasant to take high derivativesat or cot; however,
one can clearly see that the coefficients in the Taylor expansion are rational.

TheBernoullinumbers3,, k = 0,1, 2, ... are defined by the generating func-
tion

t =tk 1, 1t 1!
= By—=1—-t+-—————+--- 11.12
et —1 kzg "k 2' T2 304 " ( )
which implies that the Bernoulli numbers are all rational; we find

By = B; = B; = --- =0 (11.13)

They also arise in studyinﬁjﬁ’:1 n*. We also have (from the definition d3;,
bringinge! — 1 to the right hand side) that

1 = By— - : 11.14
2 k! D (k+1)! (11.14)
k=0 k'=0
We additionally have
1 1 1 5 691
By=——,Bs = —, By = —,Byg = —,B1s = ——,... (11.15
4 307 6 427 8 307 10 667 12 27307 ( )
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Note that

t t ot +1 tet? 4 et?
fL_otesl _ fet e © (11.16)
et—1 2 2et —1 2et/2 — e—t/2

is anevenfunction: this tells us thaB,, = 0 if k£ is odd and> 1, and

t t tet/Q +e —t/2
et —1 + 9 T 92 _ot2 Z B% Tk (11.17)

If we replacet by 2ix, we get again a series expansion for the cotangent; since

sinx = i. (11.18)
21
We find
B (2ix)* & Qkxk

recotr = ZB% TR ;0( 1)k Byy.2 S (11.19)

Comparing the two expansions for the cotangent we find:

k—102k—1 2k 82

C(2k) = (=1)F12 fork=1,2,3,. (11.20)

(2k)!

114 ((2k +1)

What about the values @f(2k + 1)? It is now known that(3) is odd, though

it is not known if it is transcendental. Other results include that at least so many
of certain sets of odd values must be irrational. The following is from a paper of
Euler from 1749. We are interested (say) in

© = 1m-2"43"—4"4...
© = 17"=27"43" 4"+ (11.21)
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Letm be a non-negative integer. We can evaluat®r even values of.

(e(—m) = 1-=-2"43"—4" ...
— I—me2+3mx3—4mx4+~~‘_

NS .
NONES

So we need to find the Taylor expansionﬁ?;. Note that (!):

t=0

et 14 2 1
1+et e2t—1 et—1’
so that
tet 4y ot t
14+et et —1 et —1
= t+ Y B2 ~1)g
k=0
and so
e' - k41 tF
=1 B 2 —1 .
1+ et 2 Braa )(k:+1)!

k=0

Note that the constant termist B, = ;5. Thus

Ci(o) =

(2m+ —1)Z=s form =1,2,3,...

m) =9y if m—=2,4,6,...

/—/H[\:HF—‘

We are using beautiful formulas, such as:at 1, we have

1
+ + 1
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(11.25)
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The values of . at positive integers: Recall that (s) = (1 — 2'7%)((s), so
we have

(+(1) = log2
(2k) = (1- 21—%)(—1)’“—12%—17#’“%, k=1,2,3,...(11.28)
What does . (2k + 1) equal?
1 1

C0) = 5 Go(-1) = 1 G(-2) =0, Gu(=3) = ¢, Ga(~4) =0, ... (11.29)

2’ 8’
If he had gone more (he stopped at 9), he would’'ve seen the 691 from Bernoulli
numbers resurface. Thus for=1,2,3, ...

C(1 — 2k) 2% 1 ey (2 —1)!
A LD (11.30)
and so
a 2l (—1)E i s even,> 2
Gell=m) _ ) if m is odd,> 3 (11.31)
Ce(m) . T
2log 2 itm =1
Euler observes that this can be written
(+(1—m) —2rL cos(7rm/2)% if m>2
— = 1 — (11.32)
Cx(m) 21log 2 ifm=1
and conjectures
(+(1—3) 25 —1 [(s)
= = — 2 for all s. 11.
) 511 cos(ms/2) . foralls (11.33)
This does give valug\lol—g2 ats = 1 and also reduces to
1
r (5) = (11.34)

whens = 1. He continues and tries = £, and does some numerics. Using
C+(s) = (1 — 2'7%)((s), we can rewrite this conjecture in the form

C(1—s) = 2" cos(ms/2)[(s)m5¢(s), (11.35)

which is Riemann’s functional equation.
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11.5 Appendix on((s)

Handout from Steve Miller

Let [x] denote the greatest integer less than or equaland let{z} = x—[x].

Following Davenport [Da], we have the following:

o - £l

n=1

o n+1

= SZn/ =57t
n=1 n
0 n+1

= SZ/ (L]t dt

= s/ [t dt
1

= s/ t Sdt—s/ {tht—=tdt
1

S

= = 1 O(s).

Therefore, we have shown
Lemma 11.5.1.¢(s) = *5 + O(s).
In fact, in the above thé&(s) term is at mosts|. Let

G =3~

n<x ne
We want to compare(s) with ¢, (1) and(,(s). We have
(.(1) = logx plus lower order terms

A similar argument as before gives

=1 > 1 1 1
2w T ;”[Ewnﬂy]‘zsl

= x4 O(xlfs).

(11.36)

(11.37)

(11.38)

(11.39)



Let us choose

1
s = s(x) = 1+ . (11.40)
log
Then
Z 1 = logx- (l—l— ! ) -17@%—0(1)
ns log =
n=x+1
= (logz+1)- e hoEs + O(1)
= lofm L O(1). (11.41)
Therefore,
=1
o) = - Y
n=x+1
1
= L+ 0(s) - == 400
s—1
1
= (logx+1)— 8T | O(1)
_ 2 leaton). (11.42)
e

Therefore, fors = 1 + @ ((s),¢.(s) and(,(1) are all a constant timdsg x.
Up to lower order termg;(s) and(,(1) both equalog x; (. (s) is slightly smaller,
approximately% log x =~ .632log x.

Thus, the most efficient of these (to determirie) for s close to 1) i((s) =

—*5 + O(s), which involves one division. We can make t¢s) error explicit, as
s-O(1);infact, fors > 1, theO(1) error is at mostg—2 + 1.
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Chapter 12
Thursday, February 12th, 2004

Lecturer: Vitaly Bergelson

12.1 Euler and Continued Fractions Il

Bostwick Wyman and his mother transferred a paper by Euler on continued frac-
tions. Two years later, Euler wrote another paper on the subject (50+ pages, many
expressions of continued fractions). Turns out that Russians (historians) are very
good at checking what Euler did in his notebooks — people have careers describing
what he did in his notebooks. There are at least 50 notes concerning continued
fractions. He was using continued fractions to calculate definite integrals. Some
of the crazy divergent series we've seen earlier came from continued fractions.
Four things Euler did with continued fractions:

1. Pell Equation (Euler didn’t care too much on proofs, cared about results and
speed of approximation; seems he knew the algorithm though Lagrange was
the one who proved it);

2. Euler showed that ande™, r € Q, are irrational; he had explicit, infinite
continued fraction expressions for these, which imply they are irrationals,
although he never stressed this point (Lambert proved irrationalityluyf
using continued fraction expansions of functions);

3. Eulerwas able to explain, by playing with sequences versus products, Brouncker’s

formula (forr); in 1776 Euler observes that
s 1 1 1

(A 12.1
4 375 77" (12.1)
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and

L (12.2)
SR pp—
o
21,0
24...

are identical; relates to the Wallis product

2.4-4-6-6---

12.3
3.3.5.5... ( )

4. calculating integrals and solving differential equations (it was his knowl-
edge of some differential equations that led to his formulas)or

12.2 /n

V2 = 1.41421356, (12.4)

which leads to a continued fraction expansion

1
[t . 12.5
24— (12:5)

1
2+2_|_...
Does the same witk/3,
V3 o= [1:1,2,1,2,...], (12.6)

where the number before the semicolon is the greatest integer less than or equal
to our number.
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What is Euler’s proof? Start with fractions like

1
a + — = T. (12.7)
b+ —+
b+b+...

. Thus, we find
1
b+z—a

b / b1
= —— 14+ —. 12.8
T a 2+ + 1 ( )

Lettingb = 2, a = 1, we get the expansion far = /2. Thus, we have the
expansion for/a? + 1.

Take now numbers of the form

a -+

(12.9)

bt o

. He sees / believes from this that any nice periodic continued fraction will lead to
a quadratic irrational.

Theorem 12.2.1 (Lagrange) A simple (all ones along the numerators) continued
fraction ofz is eventually periodic if and only if is a quadratic irrational (called
a quadratic surd in this field).

Galois gave a necessary and sufficient condition for a continued fraction to be
purely periodic. Euler opened the gate for these two theorems.

12.3 Denominators in Arithmetic Progression
Consider a continued fractian= [0; ay, as, ag, . . . |. We call theu; the denomina-

tors (sometimes also call them digits). What about numbers whose denominators
are in arithmetic progression?
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Euler was the first one to usg though sometimes they would user a or b
for 2.71828182845904 . . .. He divides byl0 to a large power, and arrives at

e = [21,2,1,1,4,1,1,6,1,1,8,...]. (12.10)
Then he studies
V2 = 1.6487212707 = [1;1,1,1,5,1,1,9,1,1,13,...]. (12.11)
He finds \ .
ﬁ; = [0:5,18,30,42,54, .. ], (12.12)
and then he finds 21
¢ ;- = [357.9,11,13,..], (12.13)

finally giving an uninterrupted arithmetic progression.
Again, Euler takes a special case, where we have an arithmetic progression
interrupted by two terms:

x = [a;m,n,b,m,n,c,;myn,d,...|

1
= [((mn+ 1)a +n; (mn+ 1)b+m +n, (mn + 1)c + m + (12.1]4)
mn + 1

Proof? Take partial quotients, and see they are identical. Consider rational func-
tions ofe — will these be of this form? If something is of this form, is it a rational
function ofe?

Why didn’t Euler ask Lagrange’s Theorem? Why not attempt to try to charac-
terize all continued fractions that are periodic or eventually periodic? What is the
general characterization of such expressions?

Theorem 12.3.1 (Euler).Consider
l[a;m,n,b,m,n,c,;m,n,...] —[a;n,m,bn,m,c,n,m,d,...|. (12.15)
This equalsy= ™.
Remark 12.3.2 (Sinnott). This looks a lot like the formulgan(z + y).
Consider now

e = [21,2,1,1,4,1,1,6,...]

= [1;2,1,1,4,1,1,6,...], (12.16)
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and then ends with (after using a modification of the arguments we gave with

la;m,n,b,m,n,c,m,n,d,...]|; he shifted so that it would start in this form)

1
e = 2+ . (12.17)

2
I

104+—1

L g —

which is an arithmetic progression, and almost simple (just one non-one).

1+

5+

12.4 Riccati Equation

Consider the equation

ady? + ydr = . (12.18)
After some substitutions, it is equivalent to
adq + ¢*dp = dp. (12.19)
As an exercise, show this is the same as
g = |&3a5aTa (12.20)
p p PP
We have q
0 gp. (12.21)
1—¢?
From this, we can obtain
1
Clog—1 — pyec (12.22)
2 1—gq
He finds )
es = [1;8—1,1,1,3s —1,1,1,55 — 1,...]. (12.23)

Nowadays, we know there is a connection between(BL and continued

fractions. This group is the set of &lx 2 matrices( CCL Z ) with determinant

. : H R az+b
one; the action on € C s defined by: — =57,
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12.5 Digits and Normality

Take a typical: € [0, 1]. What can one say about such a typiealWrite
x = [0;a1(x),as(x),as(x),...]. (12.24)

See in this symbolic representation of a number, but unlike a decimal, all num-
bers are now possible as digits. Via this connectiors NV (let's assumer is
irrational). Consider the shift operator.

Analogous to decimals: let = > dfé;’f). If we look at10x mod 1, we have
> d"l*Tﬁf‘””). Consider the shift on this space. Here, want to §endi,, as, ...| to
las, as, ay, . ..]. The operation is

7o = Jish Fre©) (12.25)
0 if x=0

where{y} is the fractional part of). We can look at this on the first quadrant,
getting hyperbolas. It is not Lebesgue measure preserving. Gauss discovered that
the following measure is invariant:

1 d
/ v (12.26)
log2 J4,1+x

Gauss didn’t know how fast one approaches this measure, what is the speed of
convergence? Not unrelated to speed of convergence of continued fractions. Easy
to see this works for intervals, but how does one find this? Gauss found it from
solving some differential equation. Kuzmin and Levy in the 1900s finished the
work.

What is normality? We have an iterated function system. We should have a
notion of normality. For decimal expansions (or, even simpler, binary expansions
T = b”z(f), b, € {0,1}), then any finite word of Os and 1s should occur with
the correct frequency. For continued fractions, we have infinitely many words of
a given length (very different than the binary case). We expect almost all numbers
are normal. Surprisingly, only proved in the 1970s.

For decimals, the number

.1234567891011121314151617181920.. .. (12.27)
is normal. We also have

.12357111317192329.. .. (12.28)
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In general, for good functiong, we have
JF@)FB)FAfG)..

will be decimal normal.

Theorem 12.5.1.For almost allz,

ar(z) + az(z) + - - - an(2)
{ay(x)as(z) - -an(z) — Khinchin’s Constant

— O
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Chapter 13

Thursday, February 19th, 2004
Euler and Prime Producing
Quadratics

Lecturer: Scott Arms

13.1 Prime Generating Polynomials: Examples

ReferencesPrime Producing Polynomials and Principal Ideal Doma(is Fendel);
Prime-Producing Quadratic§R. A. Mollin, American Mathematical Monthly,
vol 104, 1997, 529-544)Prime Generating PolynomiglE. Weisstein, math-
world.com).

Example 13.1.1.Consider
{g;?—x+41;xe{o,1,...,40}}. (13.1)

Note 0 and 1 give the same prime; however, every element in this range is a prime
number! Another example is

{x2+x+39:x6{0,1,...,39}}. (13.2)

This gives distinct primes (letter to Legendre). Both examples are due to Euler.
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Consider now
x2+x+3:x€{0,1}}
x2+m+5:$€{0,1,...,5—2}}

x2—|—ac+11:x€{0,1,...,11—2}}

ot Nantun Nastun Nantun

x2+a:+17::1:€{0,1,...,17—2}}. (13.3)

We want long strings of primes from a polynomial (ie, evaluating the polynomial
at consecutive integers gives primes).

A lofty goal: find all primesp with quadratic of this form "working" (iex? +
x+pisprime forz € {0,...,p—2}; we'll formalize later what working means).

13.2 Prime Production Length

Definition 13.2.1 (Prime Production Length). For Fa(z) = z? + = + A (with
discriminantA = 1 — 4A) hasprime production length if [ > 0 is the least
integer such that's (z) is prime forz € {0,1,...,1 — 1} and either FA(l) is
compositer Fa(l) = 1 or Fao(l) = Fa(x) for some integex € {0,1,...,[—1}.

Theorem 13.2.2.If [ > 1 is the prime production length df(x) = Fa(x), then
[ < A—1. If pis the smallest odd prime such thatis a quadratic residue modulo
p, thenl < p. Moreover, ifl > 4=1 and 4 # 2, thenA4 = p.

Proof.
FA-1) = (A-1P2+(A-1)+4
= A’ —2A+4+1—-1+A+A
= A2 (13.4)

which is composite. Thug, < A — 1. Without loss of generality, let €
{0,1,...,p— 1}. We break into two cases < 0 andz # 0).

If z = 0, thenp divides the discriminant\ = 1 — 4A4. Thus, F(2}) =
732% =0modp. If [ > p%l,then’% =p. S00 > A =p? —4p. SOp = 3
(sincepis odd),A = —3, A = 1, andl = 0 (contradiction); thus] < ’%1 < p.

Suppose\ # —7andl > 42 NowA =1—-44 =1 = 12 mod A. So
eitherA = 2 orp < A (as1? is a quadratic residue). Asis odd, this implies that
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p< A lfp< A, thenl < 1%1 < %, a contradiction. This completes the proof
in the caser = 0.

Suppose now > 0. Without loss of generality, we may assumeas odd
(otherwise we can take — z, which squares to the same value mgdSoA =
(2n 4+ 1)? mod p, and F(n) = n* + n + A. This gives (simple algebra) that
M = Omod p. Also, F(p — 1 —n) = F(n) mod p. Therefore,l <
p— 1 —n < p (p dividing two different thlngs can't both be prime). Suppose
A # 2andl > %. Thus,0 < n < ”; by a similar argument as before
we find that forA # 2, sincep is the minimalp making it a quadratic residue,
that0 < n < 22 < 41 < | SoF(n) = pis a prime (sincex < [, and!
is the prime production length). This yields that0) = A < F(n) = p (since
Fis increasing). Thus4d < p, which givesA = p. This proof is from Mollin
1997. O

Theorem 13.2.3.Assuming the Hardy-Littlewood Primietuple conjecture, for
all B € N there exists am € N such that:?> + = + A has prime producing length
B.

ForB = 41, A > 10 for quadratics of this form (Lukes, Patterson, Williams).

13.3 Optimality of Euler’s Quadratic Polynomial

Letz? + 2+ A = (z 4+ a)(z + @), witha = =44 et K = Ky =
Q(a(A)) = Q(v/1 —4A). We letOk be allz € K such that the minimal poly-
nomial ofz is monic and has integer coefficients. This is a Dedekind ring ring.

Lemma 13.3.1.The set of fractional ideals modulo the principal ideals is finite;
we call its orderh = h, (the class number).

Theorem 13.3.2.If Ok is a unique factorization domain (UFDy), as above, then
F(x) = Fa(z) = 2? + = + A has prime producing lengtd — 1.

Theorem 13.3.3.If F((z) as above has prime values ftez < |1/24=1 |, then
Qxk (as above) is a principal ideal domain (PID).

Corollary 13.3.4. Ok (as above) is a PID if and only if it is a UFD.

Theorem 13.3.5 (Stark 1967) O (as above) is a PID if and only #A — 1 €
{3,7,11,19,43,67,163}.

This gives that the Euler Polynomial has the optimal prime producing length
for quadratics of this form.
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13.4 Other Polynomial Forms

Euler also looked at non-monic polynomials, such as (letter to Legendte) p,
p prime. For example, fop = 29, this is prime forz € {0,1,...,28}. If you try
3x? + 3x + 23, this has prime production length of 21. If one triag + 6z + 31,
this has prime production length of 29.

These polynomials are related. We have

02—-4-2-29
202499 = 9p2_ - - = 77
xr° + X 1.9
32—-4-.2.23
322 +3x+23 = 3x2+3x+T
62 —4-6-31
62° 4+ 62 +31 = 6x2+6x+T. (13.5)

These all have prime producing lengths equadgés%mj, with ¢ the lead-
ing coefficient.

Definition 13.4.1 (Fundamental Discriminant). If D £ 1 is a square-free inte-
ger and

(13.6)

A — AD if D # 1 mod 4
" |D ifD=1mod4

thenA is a Fundamental discriminant.

Definition 13.4.2. For A a Fundamental Discriminanyy > 1, ¢|A (g-square-
free), then

2 _ A :

qrs — = if 4¢|A

Fpqz) = , e | _ (13.7)
qxr® + qx + I otherwise

Definition 13.4.3. F(4, q) is the maximum number of primes dividing dnz) =
Faglx)forz e {0,1,... [ —1].

The examples we've listed earlier in the talk fit in this formulation. For exam-
ple, the discriminant o222 + 29is 0 — 4 - 2 - 29 has two prime factors (2, 29).
The discriminant o822 + 3x + 23 is —3 - 89 which has two prime factors (3, 89).
The discriminant ofz? + 6z + 31 is 4(—3 - 59), which has three prime factors
(2,3,59).
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Theorem 13.4.4 (Gauss)Let A < 0 be a Fundamental Discriminant witN + 1
distinct prime factors. Then the class number of the field corresponding to the
polynomial with discriminant, h(A), satisfiesh(A) = 2V if and only if the
exponent of the class group is less than or equal to 2.

Theorem 13.4.5 (Mollin 1995 or 1997)Let A < —4 be a Fundamental Discrim-
inant with V + 1 distinct prime factorsp being the largest. Suppoge> 1 divides

A, q is square-free, and hasm distinct prime factors. TheA,¢) = N+1—m
andh(A) = 239 if and only if the exponent of the class group is less than or
equal to 2.

Corollary 13.4.6. For A < —4 a Fundamental Discriminant;(A) = 1 if and
onlyif F(A,1) = 1.

Corollary 13.4.7. For A < —4 a Fundamental Discriminant;(A) = 2 if and
only if F(A,2) = 2.

We have thaRz? + p has prime production length equal taf and only if
Q(+/—2p) has class number 2 if and onlyife {3,5,11,29}.
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Chapter 14

Thursday, February 26th, 2004
Eulerian Integrals: 1" and
S-Functions

Lecturer: M.C.
A good reference (now available in English) is V. A. Zoviclrgroduction to
Mathematical Analysis

14.1 TI'-Function
Definition 14.1.1 ("-Function).
() :/ e "2 tdx :/ e_zxad—x. (14.1)
0 0 z

This integral makes sense for> 0. If we restricta to be a positive integer, we
havel'(n + 1) = nl. This follows from integration by parts; thus, thefunction
is a generalization of the factorial function. Thefunction satisfied (o + 1) =
al'(a). We havel'(0) = 1, or0! = 1.

14.2 [(-Function

Definition 14.2.1 (3-Function).
1
Bla,b) = / 271 — x)" da. (14.2)
0
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Converges for. > 0 andb > 0. Notice that3(a, b) = (b, a). Very important
in future applications is

Lemma 14.2.2 (Lowering Formula). For o > 1,

a—1
Bla,b) = mﬁ(a —1,0). (14.3)
Proof.
1
Bla,b) = / N1 — z)" " d. (14.4)
0
We integrate by parts, with*~! = v and(1 — z)*~'dz = dv. We find
1 ro1 ot
Bla,b) = ——z*'(1— l‘)b‘ + —/ (a — 12" (1 — 2)’dx
b o bJ

= 7 /01 772 (1 — x)b_l (1 —2z)dx

a—1T /1 1
= {/ % 72(1 — 2)"tdw — / 2721 —2)" tdx
b 0 0

= (5= 1,0) -~ Hla,b)
b
a_15<a7b) = B(a_lvm_ﬁ(avb)
b—1
%6(6%17) - ﬁ(a_17b>
Bla,b) = ai—g_llﬂ(a —1,b). (14.5)
O
If we switcha andb we immediately obtain
Corollary 14.2.3. For 5 > 1,
b—1
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If we keep applying formulas like the above, we eventually obtain

_ (a—1)(a—2)---(2)
blab) = G Tars-2 s L 14D

However, asi(1,b) = ¢, yielding

(a—1)(b—1)!
— ) 14.
Bla.b) e (14.8)
Multiplying both sides byu (where we are assuming b are integers) gives us
that

al(b—1)!
(a+b—1)!
= ﬁ. (149)

This gives a generalization of the binomial coefficients:

X 1
(?J) B yBly,z —y+1) (14.10)

We can now generalize Pascal’s Triangle:

af(a,b) =

1
11

121

1331

146461 (14.11)

(o)
(o) ()
() G) ) (14.12)

Note that the first diagonal of Pascal’s triangle is all 1s. The next diagonal is
1, 2, 3, 4,5, and so on. Thus, it looks like Using the generalization of the
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Binomial coefficients t((g) = m, we see thaf]) = z. Now looking at

the third diagonal, which starts 1, 3, 6, 10, and so on. Thﬁ%}éﬁ, and when
we study(5) we see something similar. Looking @) whereb is a half-integer
yields interesting patterns. For exampleequals 2 has one zerbequals 3 has
two zeros; if we takeé = g we get 2 zeros, and if we take= % we get three
zeros.

We can rewrite, using the relation

[(a)(b)

m. (14.13)

Bla,b) =

Using this, we can re-write the binomial coefficient generalization as

v\  T(x+1) .
(y) — —F<y+1)r( y+1). (14.14)

We don’t have Pascal’s Triangle if we don’t have addition between entries.
The great result is that the addition holds for the continuous analogue as well!

14.3 Catalan Numbers

Start with

11 (14.15)
We then write again underneath

11

11 (14.16)

And continue in some sense. A better definition (one we remember) is

= (2") (14.17)
n+1l\n

Definition 14.3.1 (Non-Crossing Partitions).We define aon-crossing partition
P of a set S to be a partition into pair$; = {s;,, s;,} such thats;, < s;, < sj,
iff s;, < Spy < 55,
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Lemma 14.3.2.The numbes,, of non-crossing partitions dfk] is thek! Cata-
lan numberc;, = = (%).

Any non-crossing patrtition pairs 1 with some even elenisnt since any
elements;, between 1 and its pair partner must also hayebetween 1 and its
pair partner. The number of pair partitions containfig2m} is s,,_1Sk_m: itis
determined by a non-crossing partition of the numbers inSidem) and one of
those outsidé1, 2m). This gives us the recursion relatiep = Zfz_ol SiSk_1—i
for k > 2.

Another definition is in terms of legal arrangements of parentheses.
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Chapter 15

Thursday, March 4th, 2004
Continued Fractions related to
Elliptic Functions

Lecturer: Eric Conrad

15.1 Elliptic Functions

Lots of ways to tackle elliptic functions — we will follow an approach from the
early 19th century. What is an elliptic function? One definition is a trigonometric
functions of Jacobi’'s amplitude function. Equivalent to a definition by Liouville
(meromorphic doubly periodic single valued). Jacobi showed equivalent.

Elliptic functions were functions related to what is now called elliptic inte-
grals. Legendre studied these functions extensively. He showed that any elliptic
integral (won't say exactly what this is: an integral of a rational function of a cu-
bic or quartic) can be written in terms of elementary integrals plus three kinds of
elliptic integrals. One kind, which he called the first kird,z, k):

v dx
F(z,k) = /O W T eyl (15.1)

(technically, an incomplete integral of the first kind) is the most important type.
Normally0 < k& < ‘1 (if £ > 1, changes — £; thus it suffices to také < 1).
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More specifically, we can consider

* dx
Flw,a,6) = /0 V(1 —a2s?) (1 — b2s?)’

and by simply changing we can reduce té'(z, k).

He had two students in correspondence (Jacobi, Abel). If we cover up the
second factor, it is aarcsin . If we makek = =1, it is a perfect square, and
simple to evaluate (inverse hyperbolic tangent, or can change variables a bit and
get an inverse tangent). Would you prefer to work with tangent or inverse tangents,
or sine or arcsine? Easier to work with the formers than the latters. For these, we
work with the inverses of these integrals.

Jacobi defines the amplitude function, does a trig substitution in this, Some
technicalities in inverting. What happens when we invert? Jacobi obtained three
functions; we’ll use slightly different notation.

(15.2)

s = sn(u,a,b), (15.3)

where sn is the sinus amplitudinus (sine of the amplitude); Jacobi’s notation was
sin am(u, k).

It is helpful to define two more functions. Remember we have classically that
1 — sin? 6 = cos? 4. Thus, analogously, we let

¢ = cn(u,a,b) (15.4)
and
d = dn(u, a,b). (15.5)
We have
dn=Aam A(s) = V1 — k2s2. (15.6)

These are related through a birth-death process. We have vauialpie pa-
rametersu, b:

W = ¢ dn(u,a,b)

d b

% = —a’s-dn(u,a,b)

dd b

% = —b’s-cn(u,a,b). 459
Uu
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Jacobi use&, which correspondste=1,b = k.
We need initial conditions for our differential equations. We have

sn0) = 0, cn(0) = 1, dn(0) = 1. (15.8)

Using the initial conditions and the differential equations, we can expand in a
Maclaurin series.
The functions have quarter-perioflsi K’ given by

K(k) = F(1,k); (15.9)
this is called a complete elliptic integral of the first kind. Further,
K'(k) = K(K') = K(V1—k?), (15.10)

wherek’ is the complementary modulus 4o
The name of these integrals come from finding arc lengths of curves (ellipses,
lemniscates, and so on).

15.2 Maclaurin - Taylor Series

Now that we have Maclaurin series, we go to our toolbox which includes the
Laplace Transform:

L), s} = / F(#)e—tdt. (15.11)
0
We will use a variantZ { f(u),z~'}. Formal integration gives

c {i “ﬁn,x—l} - xianx”. (15.12)

Issues of convergence: there is a norm which justifies this (the formal power series
norm).

15.3 Example One: From IVP to Pythagorean The-
orem

it is very useful to have a Pythagorean Theorem analogue. We have

cn(u,a,b)? = 1 —a?-snu,a,b)? (15.13)
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Start by showing? + a?s? is constant (differentiate). Then using the initial values
show the constant is one. Can get two more Pythagorean theorems. Thus, higher
powers of cifu, a, b) can be replaced with $n, a, b). The other important one is

dn(u, a,b)*> = 1 —b*-sn(u, a,b)’. (15.14)

Lots of Laplace transforms of elliptic functions. Considefcn(u, a,b),z~'}:
what is this equal to? We establish recurrences.
Let

c, = C{Cn(u,a,b)sr’(u,a,b)”,x_l}
D, = E{dn(u,a,b)sr(u,a,b)”,:z:’l}. (15.15)

We wantCy = £ {cn(u, a,b), z~'}. If we integrate by parts, we obtain
Co = x—a’xD,. (15.16)

Look at the recurrences. Each time we get a new letter, we get &vhat does
the z do? Pushes us further along in the Laplace transform power series. The
formal power series norm: find the first coefficient with a disagreement between
two terms, and take to the negative of that power. We are pushesitb®ff to
infinity one at a time, and we get convergence in the sense of our norm.

Thus,Cj is our start on the Laplace transform. The next thing we neéd js
which can be defined in terms 6f, andC;. We already have a relation far;
C5 can be obtained through, and Ds;. We have three term recurrences. We find

Cy = xz+d’zD
Con = naD, 1+ (n+1)a*xD,
D, = nxCy_+ (n+1)b*2C, . (15.17)

Three term recurrences: should think continued fractions. We have

C, = xDy—2a*xzD,
iL'DO = 01 —+ 2a2:r;D2
JTDO 2 D2
c, + 2a°x C
o 1
:L‘DO o 1 + 2@21'D2/Cl
Cl T
- = 15.18
Do 1+ 2@21'D2/Cl’ ( )
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which sets us up for a continued fraction solution. Similar recurrenc@ffpand
so on. We can write as

C nw
= = e 15.19
D, 1—(n+1a2xD,1/C,’ ( )
We end up with the continued fraction
Cy = : (15.20)
o L+ la’x? '
|+ 4222
L+ 9a’z?
166222
1+
1+

Stieltjes had formulas fof {sn(u, k), z~'}, £ {cn(u, k), 21}, £ {dn(u, k), z~'}.
Can also do Laplace transforms on

sq(u, k) = z:&z ’]z)) (15.21)

which is an analogue of tangent (notation due to Glaisher). Using a modular trans-
formation, one finds after taking the Laplace transform that we have something

nice. In fact, it is related to sn at another lattice.
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Chapter 16
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Lecturer:

V2 = (16.1)
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