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Abstract

We show thatx(x + 1)(x + 2)(x + 3) is never a perfect square or cube
for x a positive integer. The first author is responsible for showing it is never
a square; the second author did the straightforward generalization to show
it is never a cube. This involves using elliptic curves to handle some cases;
without using elliptic curves, one can handle many cases by reducing to the
Catalan equation. The third author showed how to generalize the Catalan
argument to handle the remaining cases, which the second and third authors
then generalized to show thatx(x+1)(x+2)(x+3) is never a perfect power
for any integerx.

1 x(x + 1)(x + 2)(x + 3) is not a square

We consider the question of whether

x(x + 1)(x + 2)(x + 3) = y2 (1)

has any solutions in positive integers. (We find that it does not.) Let

u = 2x + 3, z = u2 (2)

so that

(4y)2 = 2x(2x + 2)(2x + 4)(2x + 6)

= (u− 3)(u− 1)(u + 1)(u + 3)

= (u2 − 1)(u2 − 9)

= (z − 1)(z − 9). (3)
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The difference betweenz − 1 andz − 9 is 8, so the factorsz − 1 andz − 9 have
at most a power of 2 in common; since the left-hand side of the equations above
is a square we may write

z − 1 = 2av2, z − 9 = 2bw2, (4)

wherea, b are either 0 or 1 anda + b is even, i.e., eithera = b = 0 or a = b = 1.

Case One:a = b = 0. Here we have

z = 1 + v2 = 9 + w2, (5)

so
8 = v2 − w2 = (v − w)(v + w). (6)

Sov − w andv + w are divisors of 8, the second larger than the first; alsov − w
andv + w must have the same parity. The only possibility is then

v − w = 2, v + w = 4, (7)

which implies thatv = 3, andz = 10. But z = u2 is a square, so there are no
solutions in this case.

Case Two:a = b = 1. Here we have

z = 1 + 2v2 = 9 + 2w2, (8)

so
4 = v2 − w2 = (v − w)(v + w). (9)

Sov − w andv + w are divisors of 4, the second larger than the first, and both of
the same parity; so there are no solutions in this case either.

2 x(x + 1)(x + 2)(x + 3) is not a cube

We argue similarly as before. We consider the question of whether

x(x + 1)(x + 2)(x + 3) = y3 (10)

has any solutions in positive integers. (We find that it does not.) Let

u = 8x + 12, z = u2. (11)

2



We find

84y3 = 8x(8x + 8)(8x + 16)(8x + 24)

(24y)3 = (u− 12)(u− 4)(u + 4)(u + 12)

= (u2 − 122)(u2 − 42)

= (z − 16)(z − 144). (12)

Assume some primep dividesz−144 andz−16. Then it divides their difference,
128 = 27. Thus,

z − 16 = 2av3, z − 144 = 2bw3. (13)

Without loss of generality, we may take0 ≤ a, b ≤ 2, as if either is 3 or more, we
may incorporate those factors intov or w. Thus,

212y3 = 2a+bv3w3. (14)

This implies thata + b ≡ 0 mod 3 (the number of powers of 2 on the LHS is a
multiple of 3, and the factors ofv3 andw3 give powers of 2 that are multiples of
3). There are thus three cases,a = b = 0, a = 2 andb = 1, anda = 1 andb = 2.
As z − 16 = 2av3 andz − 144 = 2bw3, in all cases we have

128 = 2av3 − 2bw3. (15)

We now show there are no solutions.

Case One:a = b = 0. This implies that

128 = v3 − w3. (16)

From this, we deduce that

128 = (v − w)(v2 + vw + w2). (17)

Clearly,u, v < 23
√

2 (ie, at most 11). Writev = w+2c (as(v−w)|128, v−w = 2c

for somec ≤ 3). Then

128 = 2c(3w2 + 3 · 2cw + 22c). (18)

We havec ∈ {0, 1, 2, 3}. Subtracting gives

27−c = 3w2 + 3 · 2cw + 22c

27−c − 22c = 3(w2 + 2cw). (19)
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If c = 3, simple algebra yieldsw2 + 8w + 16 = 0, or w = 4. Substituting yields
v = 4, but theny is negative, contradictingx being a positive integer (better, if
v = 4, thenz − 16 = 43, or z = u2 = 80, and this has no solutions in integers).
Thus,c 6= 3. If c = 0, 1, 2, then27−c − 22c = 127, 60, 16 respectively. As 127 and
16 are not divisible by 3, the only possible solution is whenc = 1. In this case we
find 20 = w2 + 4w, which has no solution in positive integers.

Case Two:a = 2, b = 1. In this case, we have

z − 16 = 4v3, z − 144 = 2w3. (20)

As z = u2, the first equation becomes

u2 = 4v3 + 16. (21)

This is an elliptic curve. Changing variables by lettingu2 = u
4

andv2 = v
4

gives
the elliptic curve

E : u2
2 = v3

2 + 42 · 16. (22)

As L(E, 1) ≈ 1.11, this curve has rank zero. Therefore, the Mordell-Weil group
has no infinite part. Thus, all solutions are torsion points. Direct calculation gives
the torsion group isZ/3Z, generated by the point[0, 16]. Thus, the torsion points
are

{[0, 16], [0,−16], [0]}, (23)

where[0] is the additive identity. Thus, the solutions are[u2, v2] = [0,±16], which
corresponds to[u, v] = [0,±64]. However,u = 0 implies thatz = 0, which yields
our product is

(z − 16)(z − 144) = 16 · 144 = 28 · 33, (24)

which is not a perfect cube. Thus, there are no solutions in this case.

Case Three:a = 1, b = 2. In this case, we have

z − 16 = 2v3, z − 144 = 4w3. (25)

As z = u2, the first equation becomes

u2 = 2v3 + 16. (26)

This is an elliptic curve. Changing variables by lettingu2 = u
2

andv2 = v
2

gives
the elliptic curve

E : u2
2 = v3

2 + 22 · 16. (27)
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As L(E, 1) ≈ .70, this curve has rank zero. Therefore, the Mordell-Weil group
has no infinite part. Thus, all solutions are torsion points. Direct calculation gives
the torsion group isZ/6Z, generated by the point[8, 24]. Thus, the torsion points
are

{[8, 24], [0, 8], [−4, 0], [0,−8], [8,−24], [0]}, (28)

where[0] is the additive identity. This implies that the rational solutions to the
original elliptic curve are

[u, v] ∈ {[16, 48], [0, 16], [−8, 0], [0,−16], [16,−48]}. (29)

If u = 0 then z = 0, and we have seen in the previous case that there is no
solution in this case. Ifv = 0, then the productx(x + 1)(x + 2)(x + 3) = 0,
which cannot happen forx a positive integer. We are reduced to checking[u, v] ∈
{[16, 48], [16,−48]}. We now use the other equation, namely thatz− 144 = 4w3.
As z = u2, for both candidates we havez = 162 = 256, which yields

166− 144 = 4w3, (30)

or
w3 = 28. (31)

As this equation has no solution in positive integers, this completes the proof that
there are no solutions.

3 Alternate Thoughts on Being a Cube: I

We want
x(x + 1)(x + 2)(x + 3) = y3. (32)

Lettingu = x− 1 we may re-write the above as

(u− 1)u(u + 1)(u + 2) = y3. (33)

The only divisors any of the four factors can have in common are 2 and 3.

Assume that 3 divides at most one of the factors. Thus, 3 divides eitheru or u+1.
Split the multiplication into two parts,(u−1)(u+1) andu(u+2). All the factors
of 2 occur in either the first multiplication or the second, but not both. As we are
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assuming 3 dividesu or u + 1, this implies that each of the two multiplications
must be a perfect cube. In particular, we have

(u− 1)(u + 1) = w3. (34)

This simplifies to
u2 − w3 = 1. (35)

This is the Catalan Equation, which is now known to have just one solution,
namelyu = 3 andw = 2. Substituting in foru gives

(3− 1)(3)(3 + 1)(3 + 2) = 120 = 23 · 3 · 5, (36)

which is not a perfect square.

We are left with the case when3|u and3|(u+2). Clearly2|u(u+1). If, however,
4 does not divideu(u + 1), then we must have

u(u + 1) = 2w3, (u− 1)(u + 2) = 22v3. (37)

Multiplying the first equation by 4 gives

(2u)(2u + 2) = (2w)3. (38)

Let z = 2u + 1. Then the above equation becomes

(z − 1)(z + 1) = (2w)3, (39)

which may be re-written as

z2 − (2w)3 = 1. (40)

We again obtain the Catalan equation, which now has the unique solutionz = 3,
w = 1. If z = 3 thenu = 1, and(u− 1)u(u + 1)(u + 2) = 0, implying there are
no solutions.

Thus, we are left with the case when3|u, 3|(u + 2), and4|u(u + 1). We could use
elliptic curve arguments again. If(u− 1)(u + 1) ≡ 9 mod 27, we would have

(u− 1)(u + 1) = 9w3. (41)
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This leads to the elliptic curve

u2 = 9w3 + 1. (42)

Lettingu2 = u
2

andw2 = w
2

we obtain the elliptic curve

E : u2
2 = w3

2 + 81. (43)

As L(E, 1) ≈ 2.02, this curve has rank 0, and the only rational solutions are the
torsion points. Direct calculation gives the torsion group isZ/6Z, generated by
[0, 9]. Further computation should yield none of these give valid solutions to the
original equation. Unfortunately, if(u − 1)(u + 1) ≡ 3 mod 27, we obtain a
rank 2 elliptic curve, which is a little harder to analyze. Fortunately, if this is the
case than instead of looking at(u− 1)(u + 1), we can look atu(u + 2), which is
equivalent to9 mod 27. Lettingz = u− 1, this gives us

(z − 1)(z + 1) = 9v3, (44)

and this is the same equation as before. It will also have zero rank, and torsion
groupZ/6Z generated by[0, 9]. Direct calculation will finish the proof.

4 Alternate Thoughts on Being a Cube: II

Case Two:a = 2, b = 1. In this case, we have

128 = 22v3 − w3

64 = 2v3 − w3

64 + w3 = 2v3. (45)

We must havew even, sayw = 2w1. This implies

64 + 8w3
1 = 2v3. (46)

As 8 divides the LHS, we must have8|2v3, sov = 2v1, yielding

64 + 8w3
1 = 16v3

1

8 + w3
1 = 2v3

1. (47)
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Again, we must havew1 = 2w2, which then impliesv1 = 2v2, giving

8 + 8w3
2 = 16v3

2

1 + w3
2 = 2v3

2

(w2 + 1)(w2
2 − w + 1) = 2v3

2. (48)

If a primep divides both factors on the LHS, then it dividesw2+1 andw2
2−w+1 =

w2(w2 + 1) − (2w2 − 1). Thus, it divides bothw2 + 1 and2w2 − 1, implying it
divides bothw2 + 1 andw2 − 2, implying it divides 3. We also havew2 is odd.
Thus,

w2 + 1 = 2 · 3cα3

w2
2 − w2 + 1 = 3dβ3, (49)

where we may assume0 ≤ α, β ≤ 2 andα + β ≡ 0 mod 3.
We know, however, that3|x(x + 1)(x + 2)(x + 3); therefore, as it is a perfect

cube, we must have27|x(x + 1)(x + 2)(x + 3). We showed earlier that the only
common factor ofv andw is 2; therefore, the only common factor ofv2 andw2

is 2. Thus, either27|v3
2 or 27|w3

2. In the first case, we have1 + w3
2 ≡ 0 mod 3,

which impliesw2 ≡ 2 mod 3. Sincew2 is clearly odd, this forcesw2 ≡ 5 mod 6.
Using1 + w3

2 ≡ 0 mod 27 yieldsw2 ≡ 17 mod 27.

5 x(x + 1)(x + 2)(x + 3) is never a perfect power

We use the following result:

Theorem 5.1 (Mihailescu 2002).Let a, b ∈ Z andn, m ≥ 2 positive integers.
Consider the equation

an − bm = ±1. (50)

The only solution are32 − 23 = 1 and1n − 0m = 1.

Consider
x(x + 1)(x + 2)(x + 3 = y3. (51)

We can re-group the factors and obtain

x(x + 3) · (x + 1)(x + 2) =
(
x2 + 3x

)
· (x2 + 3x + 2) = y3. (52)
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Letting z = x2 + 3x + 1, we find that

(z − 1)(z + 1) = y3. (53)

We may re-write this as
z2 − y3 = 1. (54)

The only solution isz = 3, y = 2, and this does not correspond tox a positive
integer.

We now consider the obvious generalization to showing thatx(x+1)(x+2)(x+3)
is never a perfect power. The only change in the previous argument is that we now
haveym instead ofy3 for some positive integerm ≥ 2. We again obtain

z2 − ym = 1, (55)

and againz = x2 + 3x + 1 = 3, which has no solution. Note this also handles the
casem = 2 (ie,x(x+1)(x+2)(x+3) is never a square). This immediately gives

z2 − 1 = y2 (56)

or equivalently
z2 = y2 + 1, (57)

and there are no adjacent perfect squares other than 0 and 1; notez = 0 yields a
non-integralx.
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