EXPLICIT CONSTRUCTIONS OF INFINITE FAMILIES OF MSTD SETS
STEVEN J. MILLER, BROOKE OROSZ, AND DANIEL SCHEINERMAN

ABSTRACT. We explicitly construct infinite families of MSTD (more sums than differ-
ences) sets, i.e., sets where |A + A| > | A — A|. There are enough of these sets to prove
that there exists a constant C' such that at least C//r* of the 2" subsets of {1,...,7} are
MSTD sets; thus our family is significantly denser than previous constructions (whose
densities are at most f(r)/2"/2 for some polynomial f(r)). We conclude by general-
izing our method to compare linear forms e; A + - - - + €, A with¢; € {—1,1}.

1. INTRODUCTION

Given a finite set of integers A, we define its sumset A + A and difference set A — A
by

A+A = Hai+aj:a,a; € A}
A—A = {a;—aj:a;a; € A}, (1.1)

and let | X | denote the cardinality of X. If |[A+A| > |A— A, then, following Nathanson,
we call A an MSTD (more sums than differences) set. As addition is commutative while
subtraction is not, we expect that for a ‘generic’ set A we have |A — A| > |A+ A, as a
typical pair (x,y) contributes one sum and two differences; thus we expect MSTD sets
to be rare.

Martin and O’Bryant [MO] proved that, in some sense, this intuition is wrong. They
considered the uniform model' for choosing a subset A of {1,...,n}, and showed that
there is a positive probability that a random subset A is an MSTD set (though, not
surprisingly, the probability is quite small). However, the answer is very different for
other ways of choosing subsets randomly, and if we decrease slightly the probability
an element is chosen then our intuition is correct. Specifically, consider the binomial
model with parameter p(n), with lim,, .., p(n) = 0and n™! = o(p(n)) (so p(n) doesn’t
tend to zero so rapidly that the sets are too sparse).” Hegarty and Miller [HM] recently
proved that, in the limit as n — 0, the percentage of subsets of {1,...,n} that are
MSTD sets tends to zero in this model.

Though MSTD sets are rare, they do exist (and, in the uniform model, are some-
what abundant by the work of Martin and O’Bryant). Examples go back to the 1960s.
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IThis means each of the 2 subsets of {1,...,n} are equally likely to be chosen, or, equivalently, that
the probability any k € {1,...,n}isin A is just 1/2.

2This model means that the probability k € {1,...,n} is in A is p(n).
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Conway is said to have discovered {0,2,3,4,7,11,12, 14}, while Marica [Ma] gave
{0,1,2,4,7,8,12,14,15} in 1969 and Freiman and Pigarev [FP] found {0, 1,2,4,5,
9,12,13, 14,16, 17, 21, 24, 25,26, 28,29} in 1973. Recent work includes infinite fam-
ilies constructed by Hegarty [He] and Nathanson [Na2], as well as existence proofs by
Ruzsa [Rul, Ru2, Ru3].

Most of the previous constructions® of infinite families of MSTD sets start with a
symmetric set which is then ‘perturbed’ slightly through the careful addition of a few
elements that increase the number of sums more than the number of differences; see
[He, Na2] for a description of some previous constructions and methods. In many
cases, these symmetric sets are arithmetic progressions; such sets are natural starting
points because if A is an arithmetic progression, then |[A + A| = |4 — A|.*

In this work we present a new method which takes an MSTD set satisfying certain
conditions and constructs an infinite family of MSTD sets. While these families are not
dense enough to prove a positive percentage of subsets of {1,...,7} are MSTD sets,
we are able to elementarily show that the percentage is at least C'/r* for some constant
C'. Thus our families are far denser than those in [He, Na2]; trivial counting5 shows
all of their infinite families give at most f(r)27/? of the subsets of {1, ..., 7} (for some
polynomial f(r)) are MSTD sets, implying a percentage of at most f(r)/2"/2.

We first introduce some notation. The first is a common convention, while the second
codifies a property which we’ve found facilitates the construction of MSTD sets.

e We let [a, b] denote all integers from a to b; thus [a,b] = {n € Z : a < n < b}.

e We say a set of integers A has the property P, (or is a P,-set) if both its sumset
and its difference set contain all but the first and last n possible elements (and
of course it may or may not contain some of these fringe elements).® Explicitly,
let « = min A and b = max A. Then A is a P,-set if

2a+mn,20—n] C A+ A (1.2)

3An alternate method constructs an infinite family from a given MSTD set A by considering A; =
{1 a;mi~! : a; € A}. For m sufficiently large, these will be MSTD sets; this is called the base
expansion method. Note, however, that these will be very sparse. See [He] for more details.

4As |A+ A| and |A — A| are not changed by mapping each = € A to ax + 3 for any fixed « and 3, we
may assume our arithmetic progression is just {0, ..., n}, and thus the cardinality of each set is 2n + 1.

SFor example, consider the following construction of MSTD sets from [Na2]: let m,d, k € N with
m>4,1<d<m-1,d#m/2,k >3ifd <m/2else k > 4. Set B = [0,m — 1]\{d}, L =
{m—d,2m—d,...,km—d},a* = (k+1)m—2dand A = BULU(a*—B)U{m}. Then A is an MSTD
set. The width of such a set is of the order km. Thus, if we look at all triples (m, d, k) with km < r
satisfying the above conditions, these generate on the order of at most 3, . > =, <, /5 Dg<pm 1 < 2,
and there are of the order 2" possible subsets of {0, ..., r}; thus this construction g_enerates_a negligible
number of MSTD sets. Though we write f(r)/2"/2 to bound the percentage from other methods, a more
careful analysis shows it is significantly less; we prefer this easier bound as it is already significantly less
than our method. See for example Theorem 2 of [He] for a denser example.

St is not hard to show that for fixed 0 < o < 1 a random set drawn from [1, n] in the uniform model
is a P| 4y, |-set with probability approaching 1 as n — oo.
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and
[—(b—a)+n, (b—a)—n] C A—A. (1.3)

We can now state our construction and main result.

Theorem 1.1. Let A = L U R be a P,, MSTD set where L. C [1,n], R C [n+ 1,2n],
and 1,2n € A;” see Remark 1.2 for an example of such an A. Fix a k > n and let m be
arbitrary. Let M be any subset of [n + k + 1,n + k + m| with the property that it does
not have a run of more than k missing elements (i.e., forall { € [n+k+1,n+m + 1]
there isa j € [(,{ + k — 1] such that j € M). Assume further thatn +k +1 ¢ M
and set A(M;k) = LUO; UM UOs U R, where O = [n+ 1,n+ k], Oy =
[n+k+m+1,n+ 2k + m] (thus the O;’s are just sets of k consecutive integers), and
R' = R + 2k + m. Then

(1) A(M; k) is an MSTD set, and thus we obtain an infinite family of distinct MSTD
sets as M varies;

(2) there is a constant C' > 0 such that as r — o0 the percentage of subsets of
{1,...,r} that are in this family (and thus are MSTD sets) is at least C /r*.

Remark 1.2. In order to show that our theorem is not trivial, we must of course exhibit
at least one P,,, MSTD set A satisfying all our requirements (else our family is empty!).
We may take the set® A = {1,2,3,5,8,9,13,15,16}; it is an MSTD set as

A+ A = {2,3,4,56,7,8,9,10,11,12,13,14, 15,16, 17,18, 19, 20, 21,
22,23,24, 25,26, 28, 29, 30, 31, 32}

A—A = {-15-14,-13,-12,—11,-10,—-8,—7,—6,—5, —4, -3, -2, —1,
0,1,2,3,4,5,6,7,8,10,11,12,13,14, 15} (1.4)

(so |A+ Al = 30 > 29 = |A — A|). Aisalso a P,-set, as (1.2) is satisfied since
[10,24] C A + A and (1.3) is satisfied since [—7,7) C A — A.

For the uniform model, a subset of [1, 2n] is a P,,-set with high probability as n — oo,
and thus examples of this nature are plentiful. For example, of the 1748 MSTD sets with
minimum 1 and maximum 24, 1008 are P, -sets.

Unlike other estimates on the percentage of MSTD sets, our arguments are not proba-
bilistic, and rely on explicitly constructing large families of MSTD sets. Our arguments
share some similarities with the methods in [He] (see for example Case I of Theorem
8) and [MO]. There the fringe elements of the set were also chosen first. A random
set was then added in the middle, and the authors argued that with high probability the
resulting set is an MSTD set. We can almost add a random set in the middle; the reason
we do not obtain a positive percentage is that we have the restriction that there can be
no consecutive block of size k of numbers in the middle that are not chosen to be in

7Requiring 1,2n € A is quite mild; we do this so that we know the first and last elements of A.

8This A is trivially modified from [Ma] by adding 1 to each element, as we start our sets with 1 while
other authors start with 0. We chose this set as our example as it has several additional nice properties
that were needed in earlier versions of our construction which required us to assume slightly more about

A.
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A(M; k). This is easily satisfied by requiring us to choose at least one number in con-
secutive blocks of size k/2, and this is what leads to the loss of a positive percentage’
(though we do obtain sets that are known to be MSTD sets, and not just highly likely to
be MSTD sets).

The paper is organized as follows. We describe our construction in §2, and prove our
claimed lower bounds for the percentage of sets that are MSTD sets in §3. We then
generalize our construction in §4 and explore when there are infinite families of sets
satisfying

’6114 + -+ €nA’ > |E1A + - +€nA| y Ei,gi S {—1, 1} (15)
We end with some concluding remarks and suggestions for future research in §5.
2. CONSTRUCTION OF INFINITE FAMILIES OF MSTD SETS

Let A C [1,2n]. We can write this set as A = L U R where L C [1,n] and R C
[n 4+ 1,2n]. We have

A+ A = [L+LJU[L+ R|U[R+ R] (2.1
where L + L C [2,2n|, L+ R C [n+2,3n] and R+ R C [2n + 2,4n]|, and
A—A =[L-RU[L-LJU[R-RJU[R - L] (2.2)

where L— RC [-1,-2n+1,L—-LC|[-(n—1),n—1,R—RC[-(n—1),n—1]
and R — L C [1,2n —1].

A typical subset A of {1,...,2n} (chosen from the uniform model, see Footnote 1)
will be a P,-set (see Footnote 6). It is thus the interaction of the “fringe” elements that
largely determines whether a given set is an MSTD set. Our construction begins with a
set A that is both an MSTD set and a P,,-set. We construct a family of P,,, MSTD sets
by inserting elements into the middle in such a way that the new set is a P,-set, and the
number of added sums is equal to the number of added differences. Thus the new set is
also an MSTD set.

In creating MSTD sets, it is very useful to know that we have a P, -set. The reason
is that we have all but the “fringe” possible sums and differences, and are thus reduced
to studying the extreme sums and differences. The following lemma shows that if A
is a P,, MSTD set and a certain extension of A is a P,-set, then this extension is also
an MSTD set. The difficult step in our construction is determining a large class of
extensions which lead to P,-sets; we will do this in Lemma 2.2.

Lemma 2.1. Let A = L U R be a P,-set where L C [1,n] and R C [n + 1,2n|. Form
A" = LUMU R where M C [n+1,n+m]and R' = R+ m. If A" is a P,-set then
A"+ A'| = |[A+ Al = |A — A'| — |A — A| = 2m (i.e, the number of added sums is
equal to the number of added differences). In particular, if A is an MSTD set then so is
Al

Proof. We first count the number of added sums. In the interval [2,n + 1] both A + A
and A" + A’ are identical, as any sum can come only from terms in L + L. Similarly,
we can pair the sums of A + A in the region [3n + 1,4n| with the sums of A’ + A’ in

Without this requirement, we could take any M and thus would have a positive percentage work,
specifically at least 2~ (2k+2n)
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the region [3n + 2m + 1, 4n + 2m)/, as these can come only from R+ R and (R +m) +
(R + m) respectively. Since we have accounted for the n smallest and largest terms
in both A+ A and A’ + A’, and as both are P,-sets, the number of added sums is just
Bn+2m+1)— 3n+1) =2m.

Similarly, differences in the interval [1 — 2n, —n| that come from L — R can be
paired with the corresponding terms from L — (R + m), and differences in the interval
[n,2n — 1] from R — L can be paired with differences coming from (R + m) — L.
Thus the size of the middle grows from the interval [—n + 1,n — 1] to the interval
[-n — m + 1,n + m — 1]. Thus we have added (2n + 2m + 3) — (2n + 3) = 2m
differences. Thus [A" + A'| — |[A+ A| = |A' — A'| — |A — A| = 2m as desired. O

The above lemma is not surprising, as in it we assume A’ is a P,-set; the difficulty
in our construction is showing that our new set A(M; k) is also a P,-set for suitably
chosen M. This requirement forces us to introduce the sets O; (which are blocks of k
consecutive integers), as well as requiring M to have at least one of every k consecutive
integers.

We are now ready to prove the first part of Theorem 1.1 by constructing an infinite
family of distinct FP,, MSTD sets. We take a P,,, MSTD set and insert a set in such a
way that it remains a P,-set; thus by Lemma 2.1 we see that this new set is an MSTD
set.

Lemma 2.2. Let A = LU R be a P,-set where L C [1,n|, R C [n + 1,2n], and
1,2n € A. Fixa k > n and let m be arbitrary. Choose any M C [n+k+1,n+k+m]
with the property that M does not have a run of more than k missing elements, and
form A(M; k) = LUO; UM UOy U R where Oy = [n+1,n+k], Oy = [n+k+
m+1,n+ 2k +m|, and R' = R+ 2k + m. Then A(M; k) is a P,-set.

Proof. For notational convenience, denote A(M; k) by A’. Note A+ A" C [2,4n+4k+
2m]. We begin by showing that there are no missing sums from n + 2 to 3n + 4k + 2m;
proving an analogous statement for A’ — A’ shows A’ is a P,-set. By symmetry'® we
only have to show that there are no missing sums in [n + 2, 2n + 2k + m]. We consider
various ranges in turn.

We observe that [n + 2,n + k + 1] € A’ 4+ A’ because we have 1 € L and these
sums result from 1 + O;. Additionally, O; + O; = [2n + 2,2n + 2k] C A’ + A’
Since n < k we have n + k + 1 > 2n + 1, these two regions are contiguous and thus
n+2,2n+2k) C A+ A

Now consider O;+ M. Since M does not have a run of more than k£ missing elements,
the worst case scenario (in terms of getting the required sums) is that the smallest ele-
ment of M is n+2k and that the largest element is n+m-+1 (and, of course, we still have
at least one out of every £ consecutive integers is in M). If this is the case then we still
have O1+M D [(n+1)+(n+2k), (n+k)+(n+m+1)] = 2n+2k+1, 2n+k+m+1].
We had already shown that A’ + A’ has all sums up to 2n + 2k; this extends the sumset
to all sums up to 2n + k + m + 1.

All that remains is to show we have all sums in [2n + k +m + 2, 2n 4 2k + m]. This
follows immediately from Oy + Oy = 2n+k+m+2,2n+ 3k +m| C A’ + A'. This
extends our sumset to include all sums up to 2n+3k+m, which is well past our halfway

10Apply the arguments below to the set 2n + 2k + m — A’, noting that 1,2n + 2k +m € A’.
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mark of 2n + 2k 4+ m. Thus we have shown that A"+ A" D [n+ 2,3n + 4k + 2m + 1].

We now do a similar calculation for the difference set, which is contained in [—(2n +
2k+m)+1, (2n+2k+m)—1]. As we have already analyzed the sumset, all that remains
to prove A is a P,-set is to show that A’ — A" D [-n—2k—m+1,n+2k+m—1]. As
all difference sets'' are symmetric about and contain 0, it suffices to show the positive
elements are present, i.e., that A" — A" D [1,n + 2k +m — 1].

We easily see [1,k — 1] C A’ — A" as [0,k — 1] C Oy — O;. Now consider M — O;.
Again the worst case scenario (for getting the required differences) is that the least
element of M is n + 2k and the greatest is n + m + 1. With this in mind we see that
M—-0,D>[n+2k)—(n+k),(n+m+1)—(n+1)] = [k,m]. Now O — O D
[(n+k+m+1)—(n+k),(n+2k+m)—(n+1)] =[m+1,2k+m— 1], and we
therefore have all differences up to 2k +m — 1.

Since 2n € A we have 2n + 2k + m € A’. Consider (2n + 2k +m) — O; =
[n+k+m,n+ 2k +m — 1]. Since k > n we see that n + k + m < 2k + m; this
implies that we have all differences up to n + 2k + m — 1 (this is because we already
have all differences up to 2k +m — 1, and n + k + m is either less than 2k +m — 1, or
at most one larger). U

Proof. Proof of Theorem 1.1(1). The proof of the first part of Theorem 1.1 follows
immediately. By Lemma 2.2 our new sets A(M;k) are P,-sets, and by Lemma 2.1
they are also MSTD. All that remains is to show that the sets are distinct; this is done by
requiring n+k-1 is not in our set (for a fixed k, these sets have elements n+1, ..., n+k
but not n + k + 1; thus different % yield distinct sets). O

3. LOWER BOUNDS FOR THE PERCENTAGE OF MSTDsS

__To finish the proof of Theorem 1.1, for a fixed n we need to count how many sets
M of the form O, U M U O, (see Theorem 1.1 for a description of these sets) of width
r = 2k + m can be inserted into a P,, MSTD set A of width 2n. As O, and O, are
just intervals of k& consecutive ones, the flexibility in choosing them comes solely from
the freedom to choose their length & (so long as £ > n). There is far more freedom to
choose M.

There are two issues we must address. First, we must determine how many ways there
are there to fill the elements of M such that there are no runs of k& missing elements.
Second, we must show that the sets generated by this method are distinct. We saw in
the proof of Theorem 1.1(1) that the latter is easily handled by giving A(M; k) (through
our choice of M) slightly more structure. Assume that the element n + £ + 1 is not in
M (and thus not in A). Then for a fixed width » = 2k + m each value of k gives rise
to necessarily distinct sets, since the set contains [n + 1,n + k] but not n + k£ + 1. In
our arguments below, we assume our initial P,, MSTD set A is fixed; we could easily
increase the number of generated MSTD sets by varying A over certain MSTD sets of
size 2n. We choose not to do this as n is fixed, and thus varying over such A will only
change the percentages by a constant independent of k£ and m.

11Unless, of course, A is the empty set!
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Fix n and let 7 tend to infinity. We count how many M’s there are of width r such
that in M there is at least one element chosen in any consecutive block of & integers.
One way to ensure this is to divide M into consecutive, non-overlapping blocks of size
k/2, and choose at least one element in each block. There are 2k/2 subsets of a block
of size k/2, and all but one have at least one element. Thus there are 2¥/2 — 1 =
2F/2(1 — 27%/2) valid choices for each block of size k/2. As the width of M is r — 2k,
there are [rl;/é"“ 1< 772 —3 blocks (the last block may have length less than & /2, in which
case any configuration will suffice to ensure there is not a consecutive string of £ omitted

elements in M because there will be at least one element chosen in the previous block).

We see that the number of valid M’s of width r — 2k is at least 2"2% (1 — 2_k/2) ZEd

As O and O, are two sets of k consecutive 1’s, there is only one way to choose either.
We therefore see that, for a fixed k, of the 2" = 2m+2k possible subsets of 7 consec-

utive integers, we have at least 272 (1 — 27+/2) #7277 are permissible to insert into A.
To ensure that all of the sets are distinct, we require n+k+1 ¢ M; the effect of this is to
eliminate one degree of freedom in choosing an element in the first block of M, and this
will only change the proportionality constants in the percentage calculation (and not the
r or k dependencies). Thus if we vary k from n to r/4 (we could go a little higher, but
once k is as large as a constant times r the number of generated sets of width r is negli-

gible) we have at least some fixed constant times 2" 37/* o5 (1 —27+/2) 77275 MSTD
sets; equivalently, the percentage of sets O; UM UQO; with O; of width k € {n, ... r/4}
and M of width » — 2k that we may add is at least this divided by 2", or some universal
constant times
A NG
> o (1 - W) (3.1)
k=n
(as £ > n and n is fixed, we may remove the —3 in the exponent by changing the
universal constant).
We now determine the asymptotic behavior of this sum. More generally, we can
consider sums of the form

r/4

1 1 r/ck
S(a,b,c;r) = Z Sak (1 — ﬁ) . (3.2)

k=n

For our purposes we take @ = 2 and b = ¢ = 1/2; we consider this more general sum
so that any improvements in our method can readily be translated into improvements in
counting MSTD sets. While we know (from the work of Martin and O’Bryant [MO])
that a positive percentage of such subsets are MSTD sets, our analysis of this sum yields
slightly weaker results. The approach in [MO] is probabilistic, obtained by fixing the
fringes of our subsets to ensure certain sums and differences are in (or not in) the sum-
and difference sets. While our approach also fixes the fringes, we have far more possible
fringe choices than in [MO] (though we do not exploit this). While we cannot prove a
positive percentage of subsets are MSTD sets, our arguments are far more elementary.

The proof of Theorem 1.1(2) is clearly reduced to proving the following lemma, and
then setting a = 2and b = ¢ = 1/2.
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Lemma 3.1. Let )
r/4

1 1 r/ck
S(a,b,er) = > o (1 — ﬁ> . (3.3)
k=n
Then for any € > 0 we have

1 (log r)2ate

m < S(a,b, c; T‘) < —afb (3.4)

Proof. We constantly use (1 — 1/x)" is an increasing function in z. We first prove the
lower bound. For k& > (log, r)/b and r large, we have

1 ’I’/Ck 1 2bk m 1 ™2 10;2 T ]_
(1_ﬁ) :<1_ﬁ) 2(1—;> > 5 69

(in fact, for r large the last bound is almost exactly 1). Thus we trivially have
r/4
1 1 1
S(a,b,c,r) Z Z ﬁé > m. (36)
k=(logyT)/b
For the upper bound, we divide the k-sum into two ranges: (1) bn < bk < log, r —
log,(log 7)%; (2) log, 7 — log,(log r)? < bk < br/4. In the first range, we have

r/ck 5\ T/ck
1 (log )
(om) = (2T

< e (_M)

clog,r

blog 2
< exp (— b (log 7“)‘5_1> . 3.7)
c
If 6 > 2 then this factor is dominated by I < r~4 for any A for r
sufficiently large. Thus there is negligible contribution from k£ in range (1) if we take
d =2+ ¢/aforany e > 0.
For k in the second range, we trivially bound the factors (1 -1/ 2bk)r/ * by 1. We
are left with

-(log )82

1 (log7)® =1 (log7)®
> qar LS D ga < e (3.8)
k1o loma(losn)? (=0

Combining the bounds for the two ranges with 6 = 2 + ¢/a completes the proof. U

Remark 3.2. The upper and lower bounds in Lemma 3.1 are quite close, differing by
logr

a few powers of logr. The true value will be at least ( )a/b; we sketch the proof in

Appendix A.

Remark 3.3. We could attempt to increase our lower bound for the percentage of sub-
sets that are MSTD sets by summing r from Ry to R (as we have fixed r above, we are
only counting MSTD sets of width 2n + r where 1 and 2n + r are in the set. Unfor-
tunately, at best we can change the universal constant; our bound will still be of the
order 1/ R*. To see this, note the number of such MSTD sets is at least a constant times
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Zf: R 2"/ r* (to get the percentage, we divide this by 2%). If v < R/2 then there are
exponentially few sets. If 1 > R/2 then r—* € [1/R* 16/R"]. Thus the percentage of
such subsets is still only at least of order 1/ R*.

4. GENERALIZING OUR CONSTRUCTION

Instead of searching for A such that |A + A| > |A — A|, we now consider the more
general problem'? of when

|€1A + -+ EnAl > |€1A + - +€nA| s EZ',E;‘ S {—1, ]_} (41)
Consider the generalized sumset
fi,pn(A) = A+ A+ +A-A—-A—.. - — A (4.2)

where there are j; pluses' and j, minuses, and set j = j; 4 j,. Our notion of a P,-set
generalizes, and we find that if there exists one set A with |f;, j,(A)| > [fj ;4 (A)l,
then we can construct infinitely many such A. Note without loss of generality that we
may assume j; > jo.'*

Definition 4.1 (P/-set.). Let A C [1,k] with 1,k,€ A. We say A is a P?-set if any
fir, j»(A) contains all but the first n and last n possible elements.
Remark 4.2. Note that a P2-set is the same as what we called a P,-set earlier.

We expect the following generalization of Theorem 1.1 to hold.

Conjecture 4.3. For any f;, ;, and [y, if there exists a finite set of integers A which
is (1) a PJ-set; (2) A C [1,2n] and 1,2n € A; and (3) |f;,, j,(A)| > |fj1, j4(A)], then

there exists an infinite family of such sets.

The difficulty in proving the above conjecture is that we need to find a set A satisfying
| fir, 2 (A)| > |fj1, j,(A)]; once we find such a set, we can mirror the construction from
Theorem 1.1. Currently we can only find such A for j € {2, 3}:

Theorem 4.4. Conjecture 4.3 is true for j € {2,3}.

As the proof is similar to that of Theorem 1.1, we just highlight the changes. We
prove the lemmas below in greater generality than we need for our theorem as this
generality is needed to attack Conjecture 4.3. The first step is an analogue of Lemma
2.1, the second is proving that a P2-set is also a P’-set, and the third is constructing
sets A (when 7 = 3) to start the construction.

Lemma 4.5. Let A = L U R be a P-set, where L. C [1,n],R C [n+ 1,2n]. Form
A'=LUMUR where M C [n+1,n+m|and R' = R+ m. If A’ is a P!-set, then
| fiv, a2 (A = fin, (A = [ fje, o (A = | fi, 35 (A)]- Thus if [ £, 5, (A)| > | fi1, 35 (A)

the same is true for A'.

’

12We do not consider the most general problem of comparing arbitrary combinations of A, contenting
ourselves to this special case; see [HM] for some thoughts about such generalizations.

13By a slight abuse of notation, we say there are two sums in A + A — A, as is clear when we write it
as 61A —+ EQA —+ €3A.

4This follows as we are only interested in |f;, j,(A)|, which equals | f;,. ;, (A)|. This is because B
and — B have the same cardinality, and thus (for example) we see A + A — Aand —(A — A — A) have
the same cardinality.



10 STEVEN J. MILLER, BROOKE OROSZ, AND DANIEL SCHEINERMAN

Proof. Since A C [1,2n] and is a P?-set, we know f(A) C [j; — 2njs, 2nj1 — Jjo] and
[71 — 2nj2 + n,2nj; — jo —n| C f(A). Note any elements in f(A) N [j1 — 2njs, j1 —
2njs +n — 1) can only come from L+ L+ L+---+L—R—R—R—---— R.

As A C [1,2n+m), f(A) C [51 — (2n+ m)ja, (2n + m)j1 — jo] and [j; — (2n +
m)ja+1, (2n+m)j1— j2—n] C F(A)). Any elements in £(A)N\[ji — (2n+m)ja, ji —
(2n4+m)ja+n—1] can only come only from L+L+L+---+L—R —R' —R'—---—R/,
which is simply a translationof L+ L+ L+---+L—-R—-—R—-R—---—R.

A similar argument works for the right fringe of f;, ;,(A’). Thus |f(A")| = |f(A)]
jm (this is because the potential width of f;, ;,(A’) is jm more than that of f;, ;,(A
and the two fringes of these sets are in a 1-1 correspondence). Since |fj, ;,(A’)]
|fir. j»(A)| depends only on j = j;+ ja, it holds for any pair of forms with j coefficients,
and the lemma is proven. U

+

~—

’

Lemma 4.6. For j > 3, any P2-set is also a PJ-set.

Proof. Let A be a P>-set, where A C [1,k] and 1,k € A. Assume k& > 2n. Then
A+ ANn+2,2k —n] =[n+2,2k—n| (as Ais a P2-set).

Let f;,. ;, be a form with j > 3, and thus either j; or j, is at least 2; without loss of
generality we assume j; > 2. There is a form f; _o j, suchthat f;, o ;,(A)+A+A=
fir. j»(A). The proof follows by showing f;, _o j,({1, k})+ A+ A contains all necessary
elements, namely [j; —kj2+n, j1k—ja —n]. By fj,—2, j,({1, k}) we mean all numbers
of the form €,a; + - - - 4 €j_2a;_2, with the ¢; the coefficients of the form f; _» ;, and
a; € {1,k}.) We have

fi2 p({LEY) D {1 —2—i+k(i—j2) [0<i<j—2} (4.3)

To see this, we first consider ¢ < j; — 2. For such 4, for the positive summands choose
1 a total of j; — 2 — ¢ times and k a total of ¢ times, while for the negative summands
we choose k each of the j, times. If now j; —2 < ¢ < j — 2, for the positive summands
we choose k a total of @ — j, times (which is permissible as this is at most j; — 2) and
we choose 1 the remaining j; — 2 — (i — j,) times, while for the negative summands we
choose 1 all j, times. This leadstoasumof k- (i — jo) + 1 (j1 — 2+ jo — i) — 1 - jo,
which equals j; — 2 — ¢ + k(i — jo) as claimed. Unfortunately, this argument fails if
1t = j1 — 1 and j; = js, as we would then be choosing £ from the positive summands
negative one times.'> We are thus left with showing that we may obtain the sum —1 — k
in this special case. As j; = jo, we just choose 1 for the j; — 2 positive summands and
—1 for all but one of the j, negative summands (where we choose one to be k).
As Aisa P?-set, A+ A D [n + 2,2k — n]. Thus

j—2
ULLU] © fiis pn({LE) + A+ A, (4.4)
=0
where
Li = j—2—i+k(i—j)+n+2
U = 51—2—i+k(i—js)+2k—n. (4.5)

SThis is the only bad case we need consider, as we know j; > j2, and the only problem arises when
71— 72 <0.
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We see that Ly = j; — kjs +nand U;_y = j1k — j» — n, our two desired endpoints.
The proof is completed by showing the intervals [L;, U;] cover the desired interval and
has no gap with its neighbors.

Since 2n < k, we have:

< (i—i+ki—pk—1)4+k—n

= n—-2—-(i—-1)4+k((i—1)—ja)+2k—n

< U. (4.6)
Thus there are no gaps between the intervals [L; 1, U;_1], [L;, U;] and they therefore
cover the necessary range. O

Remark 4.7. Note that the above lemma is false if the size of n is unrestricted. To take
an extreme example, let A = {1,10} andn = 9. Then A isa P?-set (11 € A+ A, 0 €
A — A) but A'is not a P3-set.

Proof of Theorem 4.4. Lemmas 4.5 and 4.6 imply that the sets described in Lemma 2.2
also work in our generalized case. The counting argument of §3 requires no modifica-
tion. Thus the theorem is proved provided we can find an A to start the process.

The following set was obtained by taking elements in {2,...,49} to be in A with
probability16 1/3 (and, of course, requiring 1, 50 € A); it took about 300000 sets to find
the first one satisfying our conditions:

A = {1,2,5,6,16,19, 22, 26,32, 34, 35, 39, 43, 48, 49, 50}. 4.7)
To be a Pj;-set we need to have A+A+A D [n+3,6n—n] = [28,125] and A+ A—A D
[—n + 2,3n — 1] = [—23, 74]. A simple calculation shows A + A + A = [3,150], all

possible elements, while A + A — A = [—48,99]\{—34} (i.e., every possible element
but -34). Thus A is a Ps-set satisfying |A + A+ A| > |A+ A — A|, and thus we have
the example we need to prove Theorem 4.4. U

Remark 4.8. We could also have taken
A = {1,2,3,4,8,12,18,22,23, 25,26, 29, 30, 31, 32, 34, 45, 46, 49, 50}, 4.8)
which has the same A+ A+ Aand A+ A — A.

5. CONCLUDING REMARKS AND FUTURE RESEARCH

One avenue of future research is to complete the proof of Conjecture 4.3 and give an
elementary example of an infinite family of sets satistying | f;, ;,(A)| > |fj;, j;(A)[. We
have reason to believe the correct model is to look for PJ-sets by choosing the numbers
{2,...,2n — 1} to be in A with probability 1/j (and, of course, requiring 1,2n € A).
Unfortunately the density of such sets appears to decrease rapidly with n, and to date
straightforward computer searches have been unsuccessful when 7 = 4. As we shall see
below, perhaps a better algorithm would incorporate choosing elements near the fringes

5Note the probability is 1/3 and not 1/2.
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Estimated y(k,n)
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FIGURE 1. Estimation of v(k, 100) as & varies from 1 to 100 from a
random sample of 4458 MSTD sets.

(i.e., near 1 and 2n) with a different probability than 1/;.

We also observed earlier (Footnote 6) that for a constant 0 < o < 1, a set randomly
chosen from [1,2n] is a P|,,-set with probability approaching 1 as n — oco. MSTD
sets are of course not random, but it seems logical to suppose that this pattern continues.

Conjecture 5.1. Fix a constant 0 < o < 1/2. Then as n — oo the probability that a
randomly chosen MSTD set in [1,2n| containing 1 and 2n is a P|,)-set goes to 1.

In our construction and that of [MO], a collection of MSTD sets is formed by fixing
the fringe elements and letting the middle vary. The intuition behind both is that the
fringe elements matter most and the middle elements least. Motivated by this it is inter-
esting to look at all MSTD sets in [1, n] and ask with what frequency a given element is
in these sets. That is, what is

#{A: k€ Aand Ais an MSTD set}

W) = A At an MSTD st

5.1

as n — 0o? We can get a sense of what these probabilities might be from Figure 1.
Note that, as the graph suggests, ~y is symmetric about "T“, ie. y(k,n)=~v(n+1-

k,n). This follows from the fact that the cardinalities of the sumset and difference set

are unaffected by sending + — ax + (3 for any «, 3. Thus for each MSTD set A we get
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a distinct MSTD set n + 1 — A showing that our function ~y is symmetric. These sets
are distinct since if A = n 4+ 1 — A then A is sum-difference balanced.'’

From [MO] we know that a positive percentage of sets are MSTD sets. By the central
limit theorem we then get that the average size of an MSTD set chosen from [1,n] is
about n/2. This tells us that on average (k, n) is about 1/2. The graph above suggests
that the frequency goes to 1/2 in the center. This leads us to the following conjecture:

Conjecture 5.2. Fix a constant 0 < o < 1/2. Then lim,,_o, y(k,n) = 1/2 for |an] <
E<n-—|an].

Remark 5.3. More generally, we could ask which non-decreasing functions f(n) have
f(n) — 0o, n — f(n) — oo and lim,,_,o, y(k,n) = 1/2 for all k such that | f(n)] <
k<n—Lf(n)]

APPENDIX A. SIZE OF S(a,b,c;r)

We sketch the proof that the sum
r/4 1 1 r/ck
S(a,b,er) = > o (1 — ﬁ> (A.1)
k=n

/

. b . .
is at least (b%)a . We determine the maximum value of the summands

1 1 r/ck
fla,b,c;k,r) = 5k <1 — ﬁ) ) (A.2)

Clearly f(a,b,c; k,r) is very small if k is small due to the second factor; similarly it is
small if £ is large because of the first factor. Thus the maximum value of f(a, b, ¢; k, 1)
will arise not from an endpoint but from a critical point.

It is convenient to change variables to simplify the differentiation. Let u = 2% (so
k =logu/log2). Then

b, _mlog?2

1 cub logu
gla,b,c;u,r) = fla,b,c;k,r) = u™® (1 — E) o (A.3)
Thus
log 2
gla,b,c;u,r) =~ u “exp (—%) ) (A.4)
cu’logu

Maximizing this is the same as minimizing h(a,b, c;u,r) = 1/g(a,b,c;u,r). After
some algebra we find
, h(a,b,c;u,r) b1 9
h'(a,b,c;u,r) = ———5—= (acu log“u —rlog?2 - (blogu + 1)) . (A5)
culog”u

Setting the derivative equal to zero yields

aculog®u = rlog2-(blogu +1). (A.6)

The following proof is standard (see, for instance, [Na2]). If A =n + 1 — A then
[A+ Al = [A+(n+1—-A)| = n+14+(A-A)| = |[A-A|. (5.2)
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As we know v must be large, looking at just the main term from the right hand side
yields

acu’logu ~ rblog?2, (A7)
or
wWlogu ~ Cr, C = blog 2. (A.8)
To first order, we see the solution is “
(Cr) ; . C
Umax = @ ~ (C (log 7“) : (A.9)

Straightforward algebra shows that the maximum value of our summands is approxi-
mately (C'e!/?)=@ (lo%)a/b.
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