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ABSTRACT. We investigate some consequences of a map that arises in investigations
of models of spreads of infections.

1. INTRODUCTION AND NOTATION

In [KP] the following equation is shown to be related to the propagation of infections:

fn

((
x
y

))
=

(
1− (1− ax)(1− by)n

1− (1− ay)(1− bx)

)
(1.1)

(where we have replacedd with 1− a). We studyfn : [0, 1]2 → [0, 1]2.
Whenn is fixed, for notational convenience we often writef for fn. We always have(
0
0

)
is a fixed point; we shall call this the trivial fixed point, and any other fixed point

is called non-trivial. A valid or admissible fixed point is one in[0, 1]2.
In our arguments below we constantly use0 < a, b < 1. Some of the most important

consequences are the positivity of certain expressions, as well as1
a

and 1
b

are both
greater than1.

These are rough notes right now. First we give Steve’s arguments which completely
analyze then = 1 case. We then give some arguments forn = 2. In particular, we give
Amitabha’s argument proving Steve’s conjecture, and then some arguments of Steve
describing the nature of the fixed points. Needless to say, these are very rough notes!

2. SPECIAL CASE: n = 1

We quickly sketch some of the arguments and results from then = 1 case, as this
suggests possible approaches to handle generaln. In this case, [KP] shows that it suf-
fices to consider a one-variable problem, namelyf(x) = 1− (1− ax)(1− bx). This is
because whenn = 1 we cannot distinguish a spoke from the central node.

2.1. Fixed Points.

Lemma 2.1. The fixed points off are0 and a+b−1
ab

. If a + b ≤ 1 there is only one fixed
point in [0, 1], namely0. If a + b > 1 then there is a second fixed point in(0, 1).
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Proof. We have

f(x)− x = 1− (1− ax)(1− bx)− x

= −abx2 + (a + b)x− x

= x (abx− (a + b− 1))

= abx

(
x− a + b− 1

ab

)
. (2.1)

As the fixed points are whenf(x)− x = 0, the first half of the lemma is clear.
We must showa+b−1

ab
∈ (0, 1). Clearly we needa+b > 1; thus in this casea+b−1

ab
> 0.

To show it is at most1 it suffices to showa + b − 1 < ab or a + b − 1 − ab < 0. As
a < 1 we have

a + b− 1− ab = a− ab + b− 1

= a(1− b)− (1− b)

= (a− 1)(1− b) < 0. (2.2)

¤
Remark 2.2. The above argument is common in these investigations. Namely, after
some (moderately clever?) algebra we can easily determine the sign of the relevant
quantities.

2.2. Derivative. Recallf(x) = 1− (1− ax)(1− bx). Thus

Lemma 2.3. If a + b ≤ 1 then|f ′(x)| ≤ 1/2 for all x; if a + b > 1 thenf ′(x) > 0 for
all x.

Proof. We have

f ′(x) = a(1− bx) + b(1− ax)

= (a + b)− 2abx

= ab

(
a + b

ab
− 2x

)
. (2.3)

Note the first derivative is decreasing with increasingx.
If a + b ≤ 1 then

|f ′(x)| = |a + b− 2abx| < |1/2− (a + b)| ≤ 1/2 (2.4)

(notea + b ≤ 1 impliesab ≤ 1/4).
Assume nowa + b > 1. Whenx = 0 we havef ′(0) = a + b > 1. Whenx = 1 we

havef ′(1) = a + b− 2ab. Note

a + b− 2ab = a− ab + b− ab = a(1− b) + b(1− a) > 0. (2.5)

Thus the first derivative is always positive. ¤
Remark 2.4. A trivial argument now shows that ifa + b ≤ 1 then we have a contrac-
tion map, and everything converges to the trivial fixed point. Thus we shallalways
assume below thata + b > 1, ie that we have a non-trivial, valid fixed point.

Lemma 2.5. If a + b > 1 then we havef ′(1) < 1.
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Proof. This follows immediately from

f ′(1) = a(1− b) + b(1− a) < 1− b + b = 1. (2.6)

¤
The reason it is important to note thatf ′(1) < 1 is that we want to show thatf is a

contraction map, at least for a subset of[0, 1]. Let xf denote the fixed pointa+b−1
ab

. By
the mean value theorem we have

f(x)− f(xf ) = f ′(ξ)(x− xf ), ξ ∈ [xf , x]; (2.7)

if x < xf then we should write[x, xf ] for the interval. Asf(xf ) = xf , we can easily
see what happens to a pointx underf :

x → f(x) = xf + f ′(ξ)(x− xf ). (2.8)

Thus ifx startsabovexf thenf(x) is abovexf (because the derivative is always positive
andx > xf ); if x startsbelowxf thenf(x) is belowxf (because the derivative is always
positive andx < xf ).

This suggests that we should think off as a contraction map; the problem is we need
to show the existence of aδ ∈ (0, 1) such that|f ′(x)| ≤ 1− δ. If this were true, then by
the Mean Value Theorem we would immediately havef is a contraction. Unfortunately,
the derivative can be larger than1; for example, whenx = 0 we havef ′(0) = a+b > 1.
Thus for a small interval aboutx = 0 we do not have a contraction.

A little algebra determines wheref is a contraction. We must findxc such that
f ′(xc) = 1; asf ′ is decreasing then the interval[xc + ε, 1] will work for any ε > 0. We
have

1 = f ′(xc) = a + b− 2abxc (2.9)

implies

xc =
a + b− 1

2ab
=

xf

2
. (2.10)

For more on contraction maps, see for example [Rud]. We summarize our results for
later use:

Lemma 2.6.Leta+b > 1. The first derivative is decreasing on[0, 1]; thus its maximum
is f ′(0) = a + b > 1 and its minimum isf ′(1) < 1. Further,f ′(x) > 1 for x ∈ [0, xc),
f ′(xc) = 1 andf ′(x) < 1 for x ∈ (xc, 1]. Notef ′(x) > 0.

Proof. That f ′(x) is decreasing follows from (2.3); the claims onf ′(0) andf ′(1) are
immediate from the other lemmas. The rest follows from our choice ofxc. ¤

2.3. Dynamical Behavior. Remember we definexc so thatf ′(xc) = 1. Furtherf ′(x)
is monotonically decreasing.

Theorem 2.7. Let x0 ∈ (0, 1] and assumea + b > 1. Let xm+1 = f(xm). Then
limm→∞ xm = xf , wherexf is the non-trivial, valid fixed point.

Proof. If x = 0 then all iterates stay at0. For anyε > 0, if x ∈ [xc + ε, 1] thenf is a
contraction map, and the iterates ofx converge toxf , the unique non-zero fixed point.
As this holds for allε > 0, we see that the iterates of anyx ∈ (xc, 1] converge toxf .
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We are left withx ∈ (0, xc]. Asf ′(x) is always greater than1 on(0, xc), if x ∈ (0, xc]
thenf(x) > x. The proof is straightforward. By the Mean Value Theorem we have

f(x) = f(0) + f ′(ξ)x, ξ ∈ (0, xc). (2.11)

It is very important thatξ ∈ (0, xc) and not in[0, xc]. The reason is thatf ′(x) > 1 in
(0, xc) butf ′(xc) = 1 (see Lemma 2.6). Asf(0) = 0 we have for allx ∈ (0, xc] that

f(x) = 0 + f ′(ξ)x > x. (2.12)

If for somex ∈ (0, xc] an iterate is in(xc, 1] then by earlier arguments the future iterates
converge toxf .

Thus we are reduced to the case of anx ∈ (0, xc] such that all iterates stay in(0, xc].
We claim this cannot happen. As this is a monotonically increasing, bounded sequence,
it must converge. Specifically, fix anx ∈ (0, xc). Let x1 = f(x) and in generalxm+1 =
f(xm). Assume allxm ∈ (0, xc) (if ever anxm = xc thenxm+1 = f(xc) > xc = xm

and the claim is clear). Thus{xm} is a monotonically increasing bounded sequence,
and hence (compactness or the Archimedean property) converges, say tox̃ < xc. As f
is continuous, asxm converges tõx we must havef(xm) converges tof(x̃); in other
words, limm→∞ xm = x̃ implies limm→∞ f(xm) = f(x̃). But f(xm) = xm+1; thus
xm andf(xm) have the same limit! By regarding the sequence asxm we see the limit
is x̃; by regarding the sequence asf(xm) we see the limit isf(x̃). However,x̃ < xc,
so by the Mean Value Theoremf(x̃) > x̃ (though all we need is thatf(x̃) 6= x̃). As
the sequence{xm} cannot converge to two distinct numbers, our assumption that{xm}
converged to añx ∈ (0, xc) must be false, proving the claim. Thus, ifx ∈ (0, xc),
eventually an iterate ofx is at leastxc. By our previous analysis, we know that future
iterates converge toxf . ¤
Remark 2.8. Note the above proof required us to be very careful. Specifically, we used
the fact thatf ′(x) > 1 for x ∈ (0, xc] to show that suchx are repelled from the fixed
point0, and then we used the fact thatf ′(x) < 1 for x ∈ (xc, 1] to show such points are
attracted by the non-zero fixed pointxf . Arguments of this nature can be generalized.

Remark 2.9. We could also remark that the pointx̃ would have to be a fixed point,
which is impossible. We chose the above proof as it works for one-dimensional gener-
alizations of this problem without requiring knowledge of the locations of fixed points.

3. NEXT CASE: n = 2: RESULTS FROMAMITABHA

Steve conjectured that the behavior is as follows (for generaln): if b <
√

n
n

(1 − a)

then the only valid fixed point is the trivial one, ifb =
√

n
n

(1 − a) then the trivial fixed

point is a fixed point with multiplicity at least two (forn ≥ 2), and ifb >
√

n
n

(1−a) then
there is also a valid non-trivial fixed point. In this section we give Amitabha’s algebraic
analysis of then = 2 case, proving the conjecture. In the next section we analyze the
dynamical behavior.

Crucial in our analysis is the following lemma from Steve:

Lemma 3.1. Fix a, b ∈ (0, 1). Let

(
x
y

)
denote a fixed point off . If 0 ≤ x ≤ 1 then

0 ≤ y ≤ 1. Thus in order to determine if a fixed point is valid, it suffices to check the
x-coordinate (or show they-coordinate is invalid).
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Proof. If

(
x
y

)
is a fixed point, then looking at they-coordinate off

((
x
y

))
=

(
x
y

)
gives

1− (1− ay)(1− bx)− y = 0 (3.1)

Simple algebra yields

y =
bx

1− a + abx
. (3.2)

We first show the denominator is always positive. We haveabx ≤ a because0 ≤
a, b, x ≤ 1. Therefore1−a+abx ∈ [1−a, 1]. As the numerator is clearly non-negative,
we seey > 0.

We now provey ≤ 1. As 0 ≤ bx ≤ b, we have

y =
bx

1− a + abx
≤ bx

(1− a)bx + abx
=

1

1− a + a
= 1, (3.3)

which provesy ≤ 1. ¤

3.1. Notation. We want to find the range of values ofa andb, wherea, b ∈ [0, 1] such
that the map

f

((
x
y

))
=

(
1− (1− ax)(1− by)2

1− (1− ay)(1− bx)

)
. (3.4)

has a fixed point, i.e.f

((
x
y

))
=

(
x
y

)
where we requirex, y ∈ [0, 1]. To dispose

of trivial cases, we requirea 6= 0 andb 6= 0 in the definition above. This is equivalent
to solving the simultaneous equations:

x = 1− (1− ax)(1− by)2

y = 1− (1− ay)(1− bx) (3.5)

There are three solutions to this equation system (see attached Mathematica file or
solve the associated quadratic)

{
(0, 0),

(
n1 −√n2

n3

,
−m1 +

√
n2

m3

)
,

(
n1 +

√
n2

n3

,−m1 +
√

n2

m3

)}

where

n1 = a3 + b3 − 2a2(2 + b) + a(2 + 2b− 2b2)

n2 = b2(−4a3(−1 + b) + b4 − 4a(−1 + b)(1 + b)2 + 8a2(−1 + b2))

m1 = −2a2b + b3 + 2ab(1 + b)

m3 = 2a(−1 + a− b)b2

n3 = 2ab(a2 + b2 − a(1 + 2b)). (3.6)
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Thus, in addition to the trivial fixed point, there are two other fixed points (which
may or may not be valid, and which may or may not be non-trivial):

(
x1

y1

)
=

(
n1 −√n2

n3

,
−m1 +

√
n2

m3

)T

(
x2

y2

)
=

(
n1 +

√
n2

n3

,−m1 +
√

n2

m3

)T

. (3.7)

We analyze

x1 =
n1 −√n2

n3

y2 = −m1 +
√

n2

m3

. (3.8)

We shall show thaty2 is never in[0, 1], and thus we need not worry about the fixed point(
x2

y2

)
. We shall see thatx1 is sometimes valid, sometimes not.

Convention: When we write
√

α for α ∈ R, we always mean the positive square root.
For example, if we have an inequalityβ +

√
α < 0, this necessarily implies thatβ < 0.

The following identities are easily verified using mathematica (see the section marked
Identities in attached notebook).

n2
1 − n2 = 4(−1 + a)((a− 1)2 − 2b2)((a− b)2 − a) (3.9)

(n3 − n1)
2 − n2 = 4(−1 + a)a(−1 + b)2(1− a + b)2((a− b)2 − a) (3.10)

n1 − n3 = b3 + 2a(1− b)(b− a + 1)2 (3.11)

m1 + m3 = b(b2 + 2a(1− b)(1 + b− a)) (3.12)

We first need some technical lemmas (See the section marked Plots in attached note-
book).

Lemma 3.2. For all a, b ∈ (0, 1), n2 > 0.

Proof. Since
n2 = b2(b4 + 4a(1− b)(a− 1− b)2)

and every term in the summand is positive,n2 > 0. ¤

Remark:Because of Lemma 3.2, we can refer to
√

n2 in our formulas without concerns
about definability. Similarly, we may assume thatn3 6= 0 since otherwise both non-zero
fixed points become undefined; i.e.,b 6= a ± √a. Note we never need to worry about
b = a−√a, as the right hand side is negative becausea ∈ (0, 1). Thus the only potential
problem points are whenb = a +

√
a. If a +

√
a ≤ 1 thena ≤ (3−√5)/2 ≈ .38.

Lemma 3.3. For all a, b ∈ (0, 1), we haven1 − n3 > 0.

Proof. Immediate since every summand on the right side of Equation 3.11 is positive.
¤
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3.2. Analysis ofx1.

Lemma 3.4. If b < − 1√
2
(a− 1), thenn1 > 0.

Proof. We have

n1 = 2(−1 + a)2a + 2(1− a)ab− 2ab2 + b3

≥ 4b2a + 2(
√

2b)ab− 2ab2 + b3

(using(a− 1)2 > 2b2 and(1− a) >
√

2b)

≥ b3 + 2(1 +
√

2)ab2

Since each summand in the last expression is positive, we haven1 > 0. ¤
We say that a real numberx is admissible if0 < x < 1, otherwise it is inadmissible.

We prove the following theorem:

Theorem 3.5. If b < − 1√
2
(a− 1), thenx1 is inadmissible.

Proof. The hypothesis implies that2b2 < (a − 1)2, since bothb and− 1√
2
(a − 1) are

positive. We argue by cases:

(n3 > 0): Note that this implies that(a− b)2 > a. Thus from Equation (3.9), we
haven2

1 < n2, so that−√n2 < n1 <
√

n2. This implies that the numerator
of x1, i.e. n1 − √n2 is negative, while the denominator, i.e.,n3, is positive, so
x1 < 0 is inadmissible.

(n3 < 0): This implies that(a − b)2 < a. Thusn2
1 > n2 and so eithern1 >

√
n2

or n1 < −√n2. If n1 >
√

n2, then the numerator ofx1 is positive, while the
denominator is negative, sox1 < 0, which makes it inadmissible. If instead,
n1 < −√n2, thenn1 +

√
n2 < 0. But this means thatn1 < 0 violating

Lemma 3.4.

¤
Theorem 3.6. If b > − 1√

2
(a− 1), thenx1 is admissible.

Proof. The hypothesis implies that2b2 > (a − 1)2, since bothb and− 1√
2
(a − 1) are

positive. We argue by cases:

(n3 > 0): Note that this implies that(a − b)2 > a. Now Equation (3.10) implies
that(n3 − n1)

2 < n2. Sincen1 − n3 > 0 (Lemma 3.3), this impliesn1 − n3 <√
n2, so thatn1 − √n2 < n3 and sox1 < 1, as required. We now show that

x1 > 0: sincen3 > 0, it suffices to prove thatn1 >
√

n2. Our hypothesis
implies thatn2

1 > n2 so eithern1 >
√

n2 or n1 < −√n2. The latter option
cannot arise becausen1 > n3 andn3 > 0, son1 > 0. Thus we haven1 >

√
n2

and sox1 > 0, makingx1 admissible.
(n3 < 0): This implies that(a−b)2 < a. Equation (3.10) implies that(n3−n1)

2 >
n2. Sincen1 − n3 > 0 (Lemma 3.3), we must haven1 − n3 >

√
n2 and so

n1 −√n2 > n3. Sincen3 < 0, when we divide byn3 the sign reverses so that

x1 =
n1 −√n2

n3

< 1
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as required. We now show thatx1 > 0. Sincen3 < 0, it suffices to prove that
n1 <

√
n2. Sincen3 < 0, we haven2

1 < n2 and so−√n2 < n1 <
√

n2. Thus
n1 −√n2 < 0 and sox1 > 0.

¤
3.3. Analysis ofy2. We now consider the second root and show that it is inadmissible.

Lemma 3.7. For all a, b ∈ [0, 1], y2 > 1.

Proof. Since each summand ofm1 + m3 from Equation (3.12) is positive, we have
m1 + m3 > 0. Similarly m3 = 2a(−1 + a − b)b2 < 0 sincea − b < 1. Since
m1 + m3 +

√
n2 > 0, we have−m1+

√
n2

m3
> 1, makingy2 inadmissible. ¤

3.4. Summary of fixed points. Combining the results above yields

Theorem 3.8.Leta, b be non-zero such thatb 6= a±√a. Thenf has exactly one valid
non-trivial fixed point if and only ifb > 1√

2
(1− a).

Remark 3.9. We may need to do a bit more analysis ifb = a +
√

a, but this should be
straightforward.

4. GENERAL n WITH b < (1− a)/
√

(n): DYNAMICAL BEHAVIOR ANALYSIS

(STEVE)

Below we analyze the dynamical behavior for anyn = 2, provided thatb < (1 −
a)/

√
(n). There are probably numerous ways of showing that, in this case, all iterates

converge to the trivial fixed point. The following proof seems as good as any. It relies
on the following lemma:

Lemma 4.1. Let a, b ∈ (0, 1) with b < (1 − a)/
√

(n), and letλ1 ≥ λ2 denote the

eigenvalues of the matrix

(
aα nbβ
bγ aδ

)
, whereα, β, γ, δ ∈ (0, 1). Then−1 < λ1, λ2 <

1.

Proof. The sum of the eigenvalues is the trace of the matrix (which isa(α + δ), and
the product of the eigenvalues is the determinant (which isa2αδ − nb2βγ). Thus the
eigenvalues satisfy the characteristic equation

λ2 − a(α + δ)λ + (a2αδ − nb2βγ). (4.1)

The eigenvalues are therefore

a(α + δ)±
√

a2(α + δ)2 − 4(a2αδ − nb2βγ)

2
=

a(α + δ)±
√

a2(α− δ)2 + 4nb2βγ

2
.

(4.2)
As the discriminant is positive, the eigenvalues are real. Sincea(α + δ) ≥ 0, we have
|λ2| ≤ λ1, where

0 ≤ λ1 =
a(α + δ) +

√
a2(α− δ)2 + 4nb2βγ

2
. (4.3)
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As βδ < 1, nb2 ≤ (1− a)2 and
√

u + v ≤ √
u +

√
v for u, v ≥ 0 we find

λ1 <
a(α + δ) +

√
a2(α− δ)2 +

√
4(1− a)2

2

=
a(α + δ) + a|α− δ|+ 2(1− a)

2

=
2a max(α, δ) + 2(1− a)

2
= 1− (1−max(α, δ)) a < 1, (4.4)

where the last claim follows froma, α, δ ∈ (0, 1). ¤
Theorem 4.2. Let n ≥ 2. Assumeb ≤ (1 − a)/

√
n. Then there is only one valid fixed

point, the trivial fixed point (which may occur with multiplicity greater than 1). Further,
iterates of any point converge to the trivial fixed point.

Proof. We shall prove this by using the Mean Value Theorem and an eigenvalue analysis
of the resulting matrix.

We have

f

((
u
v

))
=

(
1− (1− au)(1− bv)n

1− (1− av)(1− bu)

)
. (4.5)

Let

c(t) = (1− t)

(
0
0

)
+ t

(
x
y

)
, c′(t) =

(
x
y

)
. (4.6)

Thusc(t) is the line connecting the trivial fixed point to

(
x
y

)
, with c(0) =

(
0
0

)

andc(1) =

(
x
y

)
. Let

F(t) = f(c(t)) =

(
1− (1− atx)(1− bty)n

1− (1− aty)(1− btx)

)
. (4.7)

Then simple algebra (or the chain rule) yields

F ′(t) =

(
a(1− bty)n nb(1− atx)(1− bty)n−1

b(1− aty) a(1− btxu)

)(
x
y

)
. (4.8)

We now apply the one-dimensional chain rule twice, once to thex-coordinate func-
tion and once to they-coordinate function. We find there are valuest1 and t2 such
that

f

((
x
y

))
−f

((
0
0

))
=

(
a(1− bt1y)n nb(1− at1x)(1− bt1y)n−1

b(1− at2y) a(1− bt2x)

)(
x
y

)
.

(4.9)
To see this, look at thex-coordinate ofF(t): h(t) = 1− (1− atx)(1− bty)n. We have
h(1)− h(0) = h(1) = h′(t1)(1− 0) for somet1. As

h′(t1) = ax(1− bt1y)n + nby(1− at1x)(1− bt1y)n−1

=
(
a(1− bt1y)n, nb(1− at1x)(1− bt1y)n−1

) ·
(

x
y

)
, (4.10)
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the claim follows; a similar argument yields the claim for they-coordinate (though we
might have to use a different value oft, and thus denote the value arising from applying
the Mean Value Theorem here byt2).

We therefore have

f

((
x
y

))
=

(
a(1− bt1y)n nb(1− at1x)(1− bt1y)n−1

b(1− at2y) a(1− bt2x)

)(
x
y

)

= A(a, b, x, y, t1, t2)

(
x
y

)
. (4.11)

To show thatf is a contraction mapping, it is enough to show that, for alla, b with
b ≤ (1 − a)/

√
n and allx, y ∈ [0, 1] that the eigenvalues ofA(a, b, x, y, t1, t2) are

less than 1 in absolute value; however, this is exactly what Lemma 4.1 gives (note our
assumptions imply thatα = (1 − bt1y)n throughδ = (1 − bt2x) are all in(0, 1)). Let
us denoteλmax(a, b) the maximum value ofλ1 for fixeda andb as we varyt1, t2, x, y ∈
[0, 1]. As we have a continuous function on a compact set, it attains its maximum and
minimum. Asλ1 is always less than 1, so is the maximum. Here it is important that we
allow ourselves to havet1, t2 ∈ [0, 1], so that we have a closed and bounded set; it is
immaterial (from a compactness point of view) thata, b ∈ (0, 1) as they are fixed. It is
important that0 < a, b < 1, as this ensures thatα, β, γ, δ < 1 and so we have the strict
inequalities claimed in Lemma 4.1. For any matrixM we have||Mv|| ≤ |λmax|||v||;
thus ∣∣∣∣

∣∣∣∣f
((

x
y

))∣∣∣∣
∣∣∣∣ ≤ λmax(a, b)

∣∣∣∣
∣∣∣∣
(

x
y

)∣∣∣∣
∣∣∣∣ ; (4.12)

asλmax(a, b) < 1 we have a contraction map. Therefore any non-zero

(
x
y

)
iterates

to the trivial fixed point ifb < (1 − a)/
√

n andn ≥ 2. In particular, the trivial fixed
point is the only fixed point (if not,A(a, b, x, y, t1, t2)v = v for v a fixed point, but we
know ||A(a, b, x, y, t1, t2)v|| < ||v|| if v is not the zero vector). ¤

5. GENERAL n WITH b > (1− a)/
√

(n): DYNAMICAL BEHAVIOR ANALYSIS

(STEVE)

5.1. Nature of the fixed points. We first analyze the nature of the fixed points. The
following lemma will be useful.

Lemma 5.1. Leta, b ∈ (0, 1), and set

A =

(
a nb
b a

)
. (5.1)

Then the eigenvalues ofA area + b
√

n, with corresponding eigenvector

( √
n

1

)
, and

a− b
√

n, with corresponding eigenvector

( −√n
1

)
. We may write any vector

(
x
y

)

as (
x
y

)
=

(
y

2
+

x

2
√

n

) ( √
n

1

)
+

(
y

2
− x

2
√

n

) ( −√n
1

)
. (5.2)

If b > (1− a)/
√

n thena + b
√

n > 1.
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Proof. The above claims follow by direct computation. It is easiest to writeA as

A = aI + b
√

n

(
0

√
n

1/
√

n 0

)
= aI + b

√
nB, (5.3)

as the eigenvalues and eigenvectors ofB are easily seen by inspection. ¤
Remark 5.2. The two eigenvectors are linearly independent, and thus a basis. Note

that any vectorv =

(
x
y

)
with positive coordinates will have a non-zero component

in the

( √
n

1

)
direction. While we were able to explicitly compute the eigenvalues and

eigenvectors here, we will not need the exact values of the eigenvectors below. From the
Perron-Frobenius theorem we know that the largest (in absolute value) eigenvalue is
positive and the corresponding eigenvector has all positive entries (because all entries
in our matrix are positive).

Theorem 5.3. Assumen ≥ 2, a, b ∈ (0, 1) and b > (1 − a)/
√

n. Then there is a

ρ = ρ(a, b, n) > 0 such that ifv =

(
x
y

)
6=

(
0
0

)
has||v|| ≤ ρ then eventually an

iterate ofv by f is more thanρ units form the trivial fixed point. In other words, the
trivial fixed point is repelling.

Proof. We must show that if||v|| is sufficiently small then there is anm such that
||f (m)(v)|| > ||v||, wheref (2)(v) = f(f(v)) and so on.

We have

f

((
u
v

))
=

(
1− (1− au)(1− bv)n

1− (1− av)(1− bu)

)

=

(
a nb
b a

) (
u
v

)
+ Oa,b,n

((
u2 + v2

u2 + v2

))
. (5.4)

In other words, there is some constantC (depending onn, a andb) such that the error

in replacingf acting on

(
u
v

)
by the linear mapA =

(
a nb
b a

)
acting on

(
u
v

)
is

at mostC

∣∣∣∣
∣∣∣∣
(

u
v

)∣∣∣∣
∣∣∣∣
2

. Thus if

(
u
v

)
has small length, the error will be negligible.

To show that eventually an iterate ofv =

(
x
y

)
is further from the trivial fixed point

thanv, we argue as follows: we replacef by A, and since one of the eigenvalues is
greater than one eventually an iterate will be further out. The argument is complicated
by the need to do a careful book-keeping, as we must ensure that the error terms are
negligible.

Let λ1 = a + b
√

n > 1 andλ2 = a − b
√

n (note |λ2| < λ1 as we have assumed
a, b > 0). We may writeλ = 1 + η, with 0 < η <

√
n. Our goal is to prove an equation

of the form

f (m)(v) = λm
1

(
y

2
+

x

2
√

n

) ( √
n

1

)
+ λm

2

(
y

2
− x

2
√

n

)( −√n
1

)
+ small.

(5.5)
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We often takem even, so thatλm
2 is non-negative. We may writex = r cos θ and

y = r sin θ, with r ≤ ρ (later we shall determine how largeρ may be).

We introduce some notation. ByE(z) we mean a vector

(
z1

z2

)
such that|z1|, |z2| ≤

z. Let v0 = v andvk+1 = f(vk). Thus

v1 = f(v0) = Av0 + E(Cr2), (5.6)

as||v0||2 = r2; hereE(Cr2) denotes our error vector, which has components at most
Cr2. If ||v1|| > r then we have found an iterate which is further from the trivial fixed
point, and we are done. If not,||v1|| ≤ r.

Assume||v1|| ≤ r. Then

v2 = f(v1) = Av1 + E(Cr2). (5.7)

But Av1 = Av0 + AE(Cr2), with E(Cr2) denoting a vector with components at most
Cr2. As the largest eigenvalue ofA is λ1, we haveAE(Cr2) = E(λ1Cr2). Thus

v2 = A2v0 + E(λ1Cr2 + Cr2). (5.8)

If ||v2|| > r we are done, so we assume||v2|| ≤ r. Then

v3 = f(v2) = Av2 + E(Cr2). (5.9)

But Av2 = A3v0 + AE(λ1Cr2 + Cr2). As

AE(λ1Cr2 + Cr2) = E(λ2
1Cr2 + λ1Cr2), (5.10)

we find
v3 = A3v0 + E(λ2

1Cr2 + λ1Cr2 + Cr2). (5.11)

If there is somem such that||vm|| > r then we are done. If not, then for allm we
have

vm = Amv0 + E

(
m−1∑

k=0

λk
1Cr2

)
= Amv0 + E

(
λm

1 − 1

λ1 − 1
· Cr2

)
. (5.12)

Using Lemma 5.1 (writingv = v0 as a linear combination of the eigenvectors and
applyingA) yields

vm = λm
1

(
y

2
+

x

2
√

n

)( √
n

1

)
+ λm

2

(
y

2
− x

2
√

n

)( −√n
1

)

+ E

(
λm

1 − 1

λ1 − 1
· Cr2

)
. (5.13)

We shall consider the casex ≥ y; the other case follows similarly. Letm be the
smallest even integer such thatλm

1 ≥ 10; asλ1 < 1 +
√

n < 2
√

n we have for such
m thatλm

1 ≤ 40n. We consider thex-coordinate ofvm. As m is even andx ≥ y the
contribution from

λm
1

(
y

2
+

x

2
√

n

) ( √
n

1

)
+ λm

2

(
y

2
− x

2
√

n

)( −√n
1

)
(5.14)

is at leastλm
1 · x

√
n

2
√

n
≥ 5x; the contribution fromE

(
λm
1 −1

λ1−1
· Cr2

)
is at mostλ

m
1 −1

λ1−1
· Cr2

≤ λm
1

η
· Cr2 ≤ 40Crn

η
· r. By assumption,r ≤ ρ. Let ρ < η

4000Cn
. Then thex-coordinate
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of vm is at least4x (sincex ≥ y, x ≥ r/
√

2). Thus||vm||2 ≥ 16x2 ≥ 8(x2 + y2) =
8||v||2 = 8r2, which contradicts||vm|| ≤ r for all m.

If insteady ≥ x then the same choices work, the only difference being that we now
look at they-coordinate. ¤
Conjecture 5.4. Let n = 2 and assumea, b ∈ (0, 1) with b > (1 − a)/

√
n. The map

f is a contraction map in a sufficiently small neighborhood of the unique non-trivial

valid fixed pointvf =

(
xf

yf

)
. Thus, ifv =

(
x
y

)
is sufficiently close tovf , then the

iterates ofv converge tovf .

As of now, I can only prove this numerically. Unfortunately the linear approximation
of f near the non-trivial valid fixed pointvf is a horrible mess, involving numerous
complicated expressions ofa andb. There are some things I can do to clean it up a bit,
but not enough to get something which is algebraically transparent.

Whenn = 2 we have

yf =
bxf

1− a + abxf

, xf =
(1− a)yf

b(1− ayf )
. (5.15)

Usingf

((
xf

yf

))
=

(
xf

yf

)
yields

(1− bxf ) =
1− yf

1− ayf

, (1− byf )
2 =

1− xf

1− axf

. (5.16)

These relations can help simplify some of the formulas; the problem is the formula for
xf in terms ofa andb is a nightmare:

xf =
2a3 + b3 − 2a2(2 + b) + a(2 + 2b− 2b2)− b

√
b4 + 4a(1− b)(a− 1− b)2

2ab(a2 + b2 − a(1 + 2b))
.

(5.17)

The resulting fixed point matrix is

Af =

(
a(1− byf )

2 2b(1− axyf )(1− byf )
b(1− ayf ) a(1− bxf )

)
. (5.18)

We want to show the largest eigenvalue is less than 1 in absolute value whenb >
(1− a)/

√
2.

We know that the critical line isb = (1−a)/
√

2 = 1/
√

2−a/
√

2. I’ve found a good
way to numerically investigate the eigenvalues ofAf is study the eigenvalues along the
line b = (m − a)/

√
2, with 1 < m < 1 +

√
2. This gives us a family of parallel lines.

For a given (valid) choice ofm, we havemax(0,m−√2) < a < 1. Below (Figures 1
through 5) is an illustrative set of plots of the largest eigenvalue for 5 different choices
of m.
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0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

FIGURE 1. Distribution of the largest eigenvalue ofAf along the line
b = (m− a)/

√
2, with m = 1 +

√
2/6 ≈ 1.2357.

0.4 0.6 0.8 1.0
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-0.5

0.5

1.0

FIGURE 2. Distribution of the largest eigenvalue ofAf along the line
b = (m− a)/

√
2, with m = 1 + 2

√
2/6 ≈ 1.4714.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1.0

-0.5

0.5

1.0

FIGURE 3. Distribution of the largest eigenvalue ofAf along the line
b = (m− a)/

√
2, with m = 1 + 3

√
2/6 ≈ 1.7071.

It is crucial thatm > 1, asm = 1 leads to a coalescing of fixed points (i.e., we have
the trivial fixed point with multiplicity two, and the third fixed point is not valid). In
Figure 6 we plot the behavior of1 − λ1(a, 1 − √2/100), whereλ1(a, b) is the largest
eigenvalue ofAf . Note that the largest eigenvalue is very close to 1, but always less
than 1, for this value ofm.

Note in Figure 6 thatλ1 is small, especially for largea. This indicates that perhaps
whena is close to 1 andb = (m − a)/

√
2 that there is a hope of proving the largest

eigenvalue is strictly less than1.
In fact, it is easy to show that ifa andb are close to1, thenxf is close to 1 as well

(which immediately implies thatyf is also close to1). This implies that the entries of
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0.7 0.8 0.9 1.0

-1.0

-0.5

0.5

1.0

FIGURE 4. Distribution of the largest eigenvalue ofAf along the line
b = (m− a)/

√
2, with m = 1 + 4

√
2/6 ≈ 1.9428.

0.85 0.90 0.95 1.00

-1.0

-0.5

0.5

1.0

FIGURE 5. Distribution of the largest eigenvalue ofAf along the line
b = (m− a)/

√
2, with m = 1 + 5

√
2/6 ≈ 2.1785.

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

FIGURE 6. Distribution of 1 minus the largest eigenvalue ofAf along
the lineb = (m− a)/

√
2, with m = 1 +

√
2/100 ≈ 1.0141.

Af are all positive numbers close to 0. A simple calculation shows

λ1(a, b) =
((1− byf )

2 + (1− axf )) a

2

+

√
((1− byf )2 − (1− axf )) a2 + 8b2(1− byf )(1− axf )(1− ayf )

2
.

(5.19)

If a, b, xf andyf are all close to1, thenλ1(a, b) will be small. We have shown
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Lemma 5.5. Letn = 2, a, b ∈ (0, 1) and assumeb > (1− a)/
√

2. Then ifa andb are
sufficiently large, thenf is a contraction map near the non-trivial valid fixed point (i.e.,
the non-trivial valid fixed point is attracting).

With some work we can determine how ‘close’a andb need to be to1.

5.2. Existence of a non-trivial, valid fixed point (new results: Steve).We show in
this subsection that ifb > (1−a)/

√
n then there is a unique, non-trivial valid fixed point

whena, b ∈ (0, 1). The proof involves looking at the intersection of two curves, one
where thex-coordinate is unchanged under applyingf , and one where they-coordinate
is unchanged after applyingf . One of these curves is concave up, the other convex up.
The proof is completed by the following lemma.

Lemma 5.6. Let h1, h2 : [0, 1] → [0, 1] be twice continuously differentiable functions
such thath1(x) is convex up,h2(x) is concave up,h1(0) = h2(0) = 0 and h1(x) 6=
h2(x) for x > 0 sufficiently small. Then for at most two choices ofx do we have
h1(x) = h2(x).

Proof. The claim is trivial if there is only one point of intersection, so assume there are
at least two. Without loss of generality we may assumep > 0 is the first point above
zero whereh1 andh2 agree. Such a smallest point exists by continuity, as we have
assumedh1(x) 6= h2(x) for x > 0 sufficiently small; if there are infinitely many points
xn where they are equal, letp = lim infn xn > 0. (We technically do not need to prove
this – we could take any two points where the functions agree and show there cannot be
a third point larger than the first two where the functions agree.)

Becauseh1(x) is convex up,h′1(x) is increasing. By the mean value theorem there
is a pointc1 ∈ (0, p) such thath′1(c1) = (h1(p) − h1(0))/(p − 0) = h1(p)/p. As h′1 is
increasing, we haveh′1(p) > h1(c1); further,h′1(x) > h1(c1) for all x ≥ p. As h2(x)
is concave up,h′2(x) is decreasing. Again by the mean value theorem there is a point
c2 ∈ (0, p) such thath′2(c2) = ((h2(p)−h2(0))/(p−0) = h2(p)/p. Ash′2 is decreasing,
we haveh′2(p) < h′2(c2), and in facth′2(x) < h′2(c2) for all x ≥ p. But h′1(c1) = h′2(c2)
(sinceh1(p) = h2(p)), soh′1(x) > h′2(x) for all x ≥ p. Thus there cannot be another
point of intersection afterp. ¤

Theorem 5.7. Assumea, b ∈ (0, 1), b > (1 − a)/
√

n andn ≥ 2. Then there exists a
unique non-trivial, valid fixed point.

Proof. We prove this through repeated applications of the Intermediate Value Theorem
and continuity. Let

g

((
x
y

))
=

(
g1(x, y)
g2(x, y)

)
= f

((
x
y

))
−

(
x
y

)
. (5.20)

Note

(
x
y

)
is a fixed point if and only ifg

((
x
y

))
= 0.

We first look for partial fixed points, namely points where either thex or the y-

coordinate is unchanged. These correspond to finding

(
x
y

)
with g1(x, y) = 0 or

g2(x, y) = 0. We first analyze the set of pairs(x, y) ∈ [0, 1]2 whereg1(x, y) = 0. We
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have
g1(x, y) = (1− (1− ax)(1− by)n)− x. (5.21)

We immediately see thatg1(0, 0) = 0, g1(0, y) > 0 for y ∈ (0, 1], andg1(1, y) < 0 for
y ∈ [0, 1]. Thus by the Intermediate Value Theorem, for eachy ∈ (0, 1] there is aφ1(y)
such thatg1(φ1(y), y) = 0 andφ1(y) ∈ [0, 1]. It is easy to see thatφ1(y) is a continuous
function ofy; in fact,

φ1(y) =
1− (1− by)n

1− a(1− by)n

φ′1(y) =
nb(1− a)(1− by)n−1

(1− a(1− by)n)2
. (5.22)

Noteφ1(y) ∈ [0, 1]: it is clearly positive, and1−c
1−ac

> 1 for c > 0 only whena > 1. As
a, b ∈ (0, 1), φ′1(y) > 0. Thusφ1(y) is strictly increasing, andφ1(0) = 0. Further, we
have for smally thatφ1(y) ≈ nb

1−a
y. To see this, we note(1− by)n = 1− nby + O(y2)

and substitute into (5.22). To aid in the analysis below, it is more convenient to re-write
this asy ≈ 1−a

nb
x (asφ′1(y) > 0 we may use the inverse function theorem to writey as a

function ofx).
We analyzeg2(x, y) = 0 similarly. We find

g2(x, y) = (1− (1− ay)(1− bx))− y = 0. (5.23)

Noteg2(0, 0) = 0, g2(x, 0) > 0 for x ∈ (0, 1], andg2(x, 1) < 0 for x ∈ [0, 1]. Solving
yields

y = φ2(x) =
bx

1− a + abx
. (5.24)

This is clearly continuously differentiable, and

φ′2(x) =
b(1− a)

(1− a + abx)2
> 0. (5.25)

Thusφ2(x) is an increasing function ofx. Further, for smallx we havey ≈ b
1−a

x.
We now use the assumption thatb > (1 − a)/

√
n. Near the origin,φ1(y) looks

like the liney = 1−a
nb

x, while near the originφ2(x) looks like the liney = b
1−a

x. If
1−a
nb

< b
1−a

thenφ2(x) is aboveφ1(y) near the origin. Cross multiplying shows that this
condition is equivalent tob2 > (1−a)/n, or b > (1−a)/

√
n. Thus, fora, b ∈ (0, 1) and

b > (1−a)/
√

n, the two curvesx = φ1(y) andy = φ2(x) have at least two intersections
in [0, 1]2; one is the trivial fixed point while the other is a non-trivial, valid fixed point.
The existence of the second point of intersection follows from the intermediate value
theorem (near the originy = φ2(x) is abovex = φ1(y); however, asx → 1 we have
φ2(x) tends to a number strictly less than 1. Thus the curvey = φ2(x) hits the line
x = 1 below (1, 1). Similarly the curvex = φ1(y) hits the liney = 1 to the left of
(1, 1). Thus the two curves flip as to which is above the other, implying that there must
be one point where the two curves are equal. This point is clearly a fixed point.

We now show there are only two intersections (i.e., there is a unique, non-trivial valid
fixed point). The proof follows from showing thaty = φ2(x) is concave up (concave
increasing) andx = φ1(y) is convex up (convex increasing). There are already two
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points of intersection, and by Lemma 5.6 there can be at most two points of intersection.
Straightforward differentiation and some algebra gives

φ′′2(x) =
−2ab2(1− a)

(1− a + abx)2
< 0

φ′′1(y) = −b2n(1− a)(1− by)n−2 · (n− 1 + a(1− by)n + a(n + 1)(1− by)n)

(1− a(1− by)n)3
< 0.

(5.26)

Thusy = φ′′2(x) is concave up (since the second derivative is always negative and the
first derivative is always positive: compare this to the standard parabolay = −x2 when
x < 0). As a function ofy, x = φ1(y) is also concave up (since its first derivative is
positive and its second derivative is negative); however, we are interested iny = φ−1

1 (x)
(the inverse function exists because the first derivative is positive). Ifφ1(y) is concave
up as a function ofy thenφ−1

1 (x) is convex up as a function ofx. This follows because
we are basically reflecting about thex = y line, and this switches us from concave to
convex (the function is obviously still increasing). The claim now follows from Lemma
5.6. ¤

In Figures 7 and 8 we plotx = φ1(y) and y = φ2(x) for a = .4, b = .5 and
n ∈ {2, 5}. As should be the case, the intersections of the two curves correspond to the

fixed points (obtained by solvingf

((
x
y

))
=

(
x
y

)
).

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

FIGURE 7. Plot of x = φ1(y) andy = φ2(x) for a = .4, b = .5 and
n = 2. The fixed point is(.350, .261).

Remark 5.8 (VERY TENTATIVE). We can try and use the above argument to show
the fixed point is attracting, at least locally. The two curvesx = φ1(y) andy = φ2(x)
break[0, 1]2 into four pieces.

(1) The region underφ2(x) and to the left ofφ1(y): in this region the effect of
applyingf is to increase the values of bothx andy.
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0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

FIGURE 8. Plot of x = φ1(y) andy = φ2(x) for a = .4, b = .5 and
n = 5. The fixed point is(.877, .565).

(2) The region underφ2(x) and to the right ofφ1(y): in this region the effect of
applyingf is to decrease the value ofx and increase the value ofy.

(3) The region aboveφ2(x) and to the right ofφ1(t): in this region the effect of
applyingf is to decrease bothx andy.

(4) The region aboveφ2(x) and to the left ofφ1(y): in this region the effect of
applyingf is to increasex and decreasey.
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