THOUGHTS ON SPECIAL MAPS RELATED TO MODELLING
INFECTIONS
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ABSTRACT. We investigate some consequences of a map that arises in investigations
of models of spreads of infections.

1. INTRODUCTION AND NOTATION

In [KP] the following equation is shown to be related to the propagation of infections:

x (1 —=(1—ax)(1—0by"
f((y)) ) ( 1= (1 - ay)(1 - br) (L)
(where we have replacetiwith 1 — a). We studyf, : [0,1]*> — [0, 1]°.

Whenn is fixed, for notational convenience we often wrjtéor f,,. We always have

8 is a fixed point; we shall call this the trivial fixed point, and any other fixed point
is called non-trivial. A valid or admissible fixed point is onelin1]>.

In our arguments below we constantly use a,b < 1. Some of the most important
consequences are the positivity of certain expressions, as w%llaml% are both
greater than.

These are rough notes right now. First we give Steve’s arguments which completely
analyze thex = 1 case. We then give some argumentsifes 2. In particular, we give
Amitabha’s argument proving Steve’s conjecture, and then some arguments of Steve
describing the nature of the fixed points. Needless to say, these are very rough notes!

2. SPECIALCASE: n =1

We quickly sketch some of the arguments and results froomthe 1 case, as this
suggests possible approaches to handle geneial this case, [KP] shows that it suf-
fices to consider a one-variable problem, nam&ly) = 1 — (1 — ax)(1 — bx). This is
because when = 1 we cannot distinguish a spoke from the central node.

2.1. Fixed Points.

Lemma 2.1. The fixed points of are 0 and %bb‘l If « + b < 1 there is only one fixed
point in [0, 1], namely0. If a + b > 1 then there is a second fixed point(in 1).
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Proof. We have
flz)—x = 1—(1—-ax)(1—bx)—x
= —abs®+ (a+b)x—=x
= xz(abr—(a+b—1))

= abr (x — w) . (2.1)
ab

As the fixed points are whef{z) — = = 0, the first half of the lemma is clear.

We must show2=1 € (0,1). Clearly we need+b > 1; thus in this casét2=1 > 0.
To show it is at most it suffices to shows +b —1 < abora+b—1—ab < 0. As
a < 1 we have

a+b—1—ab = a—ab+b—-1
= a(l—=0)—(1-0)
= (a—-1)(1-b) < 0. (2.2)

g

Remark 2.2. The above argument is common in these investigations. Namely, after
some (moderately clever?) algebra we can easily determine the sign of the relevant
guantities.

2.2. Derivative. Recallf(z) =1 — (1 — ax)(1 — bz). Thus

Lemma 2.3.1f a + b < 1then|f'(z)| < 1/2forall z; if a +b > 1 thenf'(x) > 0 for
all x.

Proof. We have
f'(z) = a(l—bx)+b(1—ax)
(a+b) — 2abx

_ ab<a+b—2x>. 2.3)
ab
Note the first derivative is decreasing with increasing
If a +b < 1then
|f'(z)] = |la+b—2abx| < |1/2—(a+Db)| < 1/2 (2.4)

(notea + b < 1 impliesab < 1/4).
Assume now: + b > 1. Whenz = 0 we havef’(0) = a +b > 1. Whenz = 1 we
havef’'(1) = a + b — 2ab. Note

a+b—2ab =a—ab+b—ab = a(l —b)+b(1l—a) > 0. (2.5)
Thus the first derivative is always positive. O

Remark 2.4. A trivial argument now shows that ifi + b < 1 then we have a contrac-
tion map, and everything converges to the trivial fixed point. Thus we staays
assume below that + b > 1, ie that we have a non-trivial, valid fixed point.

Lemma 2.5.If a + b > 1 then we have’(1) < 1.
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Proof. This follows immediately from
() =al=0)+b(1—a) < 1-b+0b = 1. (2.6)
O

The reason it is important to note thé{1) < 1 is that we want to show thatis a
contraction map, at least for a subse{®fl]. Letz; denote the fixed poirﬁ%. By
the mean value theorem we have

f@) = flzg) = [ —xf), €€ [z,2]; (2.7)

if < xy then we should writgx, 2] for the interval. Asf(x;) = z, we can easily
see what happens to a pointundery:

z — f(x) = xp+ (€)@ —xp). (2.8)

Thus ifz startsabover s thenf(x) is abover ; (because the derivative is always positive
andx > zy); if  startsbelowz thenf(z) is belowz ; (because the derivative is always
positive ande < xy).

This suggests that we should think o&s a contraction map; the problem is we need
to show the existence oftac (0, 1) such that f’(z)| < 1— 4. If this were true, then by
the Mean Value Theorem we would immediately hgus a contraction. Unfortunately,
the derivative can be larger thanfor example, when = 0 we havef'(0) = a+b > 1.
Thus for a small interval about = 0 we do not have a contraction.

A little algebra determines wherg is a contraction. We must find, such that
f'(z.) = 1, asf’ is decreasing then the intenjal. + ¢, 1] will work for any ¢ > 0. We
have

1 = f(z.) = a+b—2abx, (2.9)
implies
atb—1  xy
W — ?. (2-10)

For more on contraction maps, see for example [Rud]. We summarize our results for
later use:

T =

Lemma 2.6.Leta+b > 1. The first derivative is decreasing @ 1]; thus its maximum
is f(0) = a+ b > 1andits minimum ig’(1) < 1. Further, f’(z) > 1 for z € [0, z.),
f'(z.) =T1andf'(z) < 1forz € (x.,1]. Notef'(x) > 0.

Proof. That f’(z) is decreasing follows from (2.3); the claims ¢f{0) and f'(1) are
immediate from the other lemmas. The rest follows from our choice. .of O

2.3. Dynamical Behavior. Remember we define. so thatf’(x.) = 1. Furtherf’(x)
is monotonically decreasing.

Theorem 2.7.Letz, € (0,1] and assume. + b > 1. Letx,,.; = f(z,). Then
lim,,, o0 T, = 2, Wherez is the non-trivial, valid fixed point.

Proof. If x = 0 then all iterates stay &t For anye > 0, if © € [z. + ¢, 1] thenf is a
contraction map, and the iteratesao€onverge tor, the unique non-zero fixed point.
As this holds for alk > 0, we see that the iterates of any (z., 1] converge tar;.
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We are left withz € (0, z.]. As f'(z) is always greater thahon (0, z..), if € (0, x|
thenf(x) > x. The proof is straightforward. By the Mean Value Theorem we have

flx) = f0)+ f(©z, &€ (0,2). (2.11)
It is very important that < (0, z.) and not in[0, z.]. The reason is that'(z) > 1in
(0,z.) but f'(z.) = 1 (see Lemma 2.6). Ag(0) = 0 we have for allx € (0, z.| that

flx) = 0+ f'( )z > = (2.12)

If for somez € (0, z.] aniterate is iz, 1] then by earlier arguments the future iterates
converge tar;.

Thus we are reduced to the case ofras (0, z.] such that all iterates stay {0, z.|.
We claim this cannot happen. As this is a monotonically increasing, bounded sequence,
it must converge. Specifically, fix ane (0, z.). Letz; = f(x) and in generat,,.; =
f(zy). Assume allz,, € (0,z.) (if ever anz,, = z. thenz,, 1 = f(z.) > . = xy,
and the claim is clear). Thugr,,} is a monotonically increasing bounded sequence,
and hence (compactness or the Archimedean property) converges, ssaytg As f
is continuous, as,,, converges ta we must havef(z,,) converges tof (z); in other
words, lim,, o 2, = T implieslim,, .o f(zn) = f(Z). But f(z,,) = 2pe1; thus
x, and f(z,,) have the same limit! By regarding the sequence,asve see the limit
is z; by regarding the sequence AS:,,) we see the limit isf(z). However,z < z,
so by the Mean Value Theoreifi{z) > z (though all we need is that(z) # z). As
the sequencéz,, } cannot converge to two distinct numbers, our assumption{that
converged to a € (0,z.) must be false, proving the claim. Thus,afe (0, z,.),
eventually an iterate of is at leastr.. By our previous analysis, we know that future
iterates converge to;. O

Remark 2.8. Note the above proof required us to be very careful. Specifically, we used
the fact thatf’(z) > 1 for x € (0, z.| to show that suclr are repelled from the fixed
point0, and then we used the fact théitx) < 1 for = € (z., 1] to show such points are
attracted by the non-zero fixed point. Arguments of this nature can be generalized.

Remark 2.9. We could also remark that the poimtwould have to be a fixed point,
which is impossible. We chose the above proof as it works for one-dimensional gener-
alizations of this problem without requiring knowledge of the locations of fixed points.

3. NEXT CASE: n = 2: RESULTS FROMAMITABHA

Steve conjectured that the behavior is as follows (for genéraif b < ‘/777(1 —a)
then the only valid fixed point is the trivial one,lif= \/TE(l — a) then the trivial fixed
pointis a fixed point with multiplicity at least two (for > 2), and ifb > ‘/75(1 —a) then
there is also a valid non-trivial fixed point. In this section we give Amitabha’s algebraic
analysis of thex = 2 case, proving the conjecture. In the next section we analyze the
dynamical behavior.

Crucial in our analysis is the following lemma from Steve:

Lemma 3.1.Fix a,b € (0,1). Let Z denote a fixed point of. If 0 < 2 < 1then

0 <y < 1. Thus in order to determine if a fixed point is valid, it suffices to check the
x-coordinate (or show thg-coordinate is invalid).
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Proof. If ( z ) Is a fixed point, then looking at the-coordinate off (( 27 )) =

( v ) gives
)

l1-(1—ay)(l—bz)—y =0 (3.1)
Simple algebra yields
bx
= 2
Y l—a+abx (3.2)

We first show the denominator is always positive. We have < a becausd) <
a,b,x < 1. Thereforel —a+abz € [1—a, 1]. Asthe numerator is clearly non-negative,

we seey > 0.
We now provey < 1. As0 < bz < b, we have
bx bx 1
Y l—a+abx = (1—a)bx+ abx l—a+a ’ (3:3)
which proves, < 1. g

3.1. Notation. We want to find the range of values @andb, wherea, b € [0, 1] such

that the map
T (1= (1—az)(1—1by)?
()= (i) &4
has a fixed point, i.ef (( i )) = ( ‘; where we require, y € [0, 1]. To dispose

of trivial cases, we require # 0 andb # 0 in the definition above. This is equivalent
to solving the simultaneous equations:

r = 1—(1—ax)(l—by)?
y = 1=(1—-ay)(l—bx) (3.5)

There are three solutions to this equation system (see attached Mathematica file or
solve the associated quadratic)

o (0 ) ()

N3 ms ns mg
where
ng = a®+b —2a*2+0b)+a(2+2b—2b%)
ny = b*(—4a*(—=1+0b) +b" —4da(—1+b)(1 +b)* +8a*(—1 +b%))
my = —2a’b+ b+ 2ab(1+b)
ms = 2a(—1+a—b)b?

ns = 2ab(a®+b* — a(l+2b)). (3.6)
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Thus, in addition to the trivial fixed point, there are two other fixed points (which
may or may not be valid, and which may or may not be non-trivial):

(1) - ()

Y1 n3 ms
) _ (mtym mit e\’ (3.7)
Y2 ng ’ ms ’ .
We analyze
ny — \/n_Q
r = —
ns
p = TV (3.8)
ms3

We shall show thag, is never inj0, 1], and thus we need not worry about the fixed point

( 52 ) We shall see that; is sometimes valid, sometimes not.
2

Convention When we write\/« for a € R, we always mean the positive square root.
For example, if we have an inequalifiy+ /a < 0, this necessarily implies that < 0.

The following identities are easily verified using mathematica (see the section marked
Identities in attached notebook).

ni—ny = 4(—=1+a)((a—1)?*-2")((a—0b)*—a) (3.9)

(n3 —n1)?> —ng = 4(—=1+a)a(—1+b)*(1 —a+b)?*((a—b)*—a) (3.10)
ng—ns = b*+2a(l—-0b)b—a+1)? (3.11)
my+ms = b(b?+2a(l —b)(1+b—a)) (3.12)

We first need some technical lemmas (See the section marked Plots in attached note-
book).

Lemma 3.2. For all a,b € (0,1), ny > 0.
Proof. Since
ny = b*(b* +4a(1 — b)(a — 1 — b)?)
and every term in the summand is positixg,> 0. O

Remark:Because of Lemma 3.2, we can refefta, in our formulas without concerns
about definability. Similarly, we may assume that# 0 since otherwise both non-zero
fixed points become undefined; i.6.3# a + \/a. Note we never need to worry about
b = a—+/a, as the right hand side is negative because(0, 1). Thus the only potential
problem points are wheh= a + \/a. If a + \/a < 1 thena < (3 — /5)/2 ~ .38,

Lemma 3.3. Forall a,b € (0, 1), we haven; — ns > 0.

Proof. Immediate since every summand on the right side of Equation 3.11 is positive.
O
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3.2. Analysis of ;.

Lemma 3.4.1f b < —Z5(a — 1), thenn, > 0.

Proof. We have
ny = 2(—1+a)’a+2(1 — a)ab — 2ab® + b*
> 4b%a + 2(V/2b)ab — 2ab® + b°
(using(a — 1)2 > 2b? and(1 — a) > /2b)
>0+ 2(1 + V2)ab®
Since each summand in the last expression is positive, werhave). O

We say that a real numberis admissible i) < x < 1, otherwise it is inadmissible.
We prove the following theorem:

Theorem 3.5.1f b < —\/%(a — 1), thenz; is inadmissible.

Proof. The hypothesis implies thab? < (a — 1)?, since both) and—\/%(a — 1) are
positive. We argue by cases:

(ng > 0): Note that this implies thaiz — b)? > a. Thus from Equation (3.9), we
haveni < ny, so that—/n; < n; < \/ny. This implies that the numerator
of z,, i.e. ny — y/n, is negative, while the denominator, i.es, is positive, so
1 < 0is inadmissible.

(n3 < 0): This implies thata — b)? < a. Thusn? > n, and so eithen; > \/ny
orn; < —y/ny. If ny > /ny, then the numerator af, is positive, while the
denominator is negative, sq < 0, which makes it inadmissible. If instead,
ni < —y/ng, thenn, + \/n, < 0. But this means that; < 0 violating
Lemma 3.4.

g

Theorem 3.6.1f b > ——5(a — 1), thenz, is admissible.

Proof. The hypothesis implies thab*> > (a — 1)?, since bothb and—%(a — 1) are
positive. We argue by cases:

(n3 > 0): Note that this implies thata — b)? > a. Now Equation (3.10) implies
that(ns — n1)? < ny. Sincen; — nz > 0 (Lemma 3.3), this implies; — n3 <
/M2, SO thatn, — /ny < ng and sox; < 1, as required. We now show that
r1 > 0: sincens > 0, it suffices to prove that, > ,/n,. Our hypothesis
implies thatn? > n, so eithern; > VM2 Or ny < —,/ny. The latter option
cannot arise becausg > ns andnz > 0, son; > 0. Thus we havey, > /n,
and sar; > 0, makingz; admissible.

(n3 < 0): Thisimplies thata—b)* < a. Equation (3.10) implies that; —n;)? >
ny. Sincen; — ng > 0 (Lemma 3.3), we must have, — n3 > /ny and so
n1 — /N2 > ng. Sincens < 0, when we divide by:; the sign reverses so that

ny — \/n_2

rn=— <1
ns
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as required. We now show that > 0. Sincens < 0, it suffices to prove that
ny < \/ng. Sincens < 0, we haven? < n, and so—,/n; < n; < \/ny. Thus
ny — +/ne < 0and sar; > 0.

O

3.3. Analysis of y,. We now consider the second root and show that it is inadmissible.
Lemma 3.7. Forall a,b € [0,1], yo > 1.
Proof. Since each summand ef; + m3 from Equation (3.12) is positive, we have

my + mz > 0. Similarly ms = 2a(—1+ a — b)b* < 0 sincea — b < 1. Since
my + ms + /ny > 0, we have—%”ﬁ2 > 1, makingy,; inadmissible. O

3.4. Summary of fixed points. Combining the results above yields

Theorem 3.8.Leta, b be non-zero such that#£ a + \/a. Thenf has exactly one valid

non-trivial fixed point if and only i > \/%(1 —a).

Remark 3.9. We may need to do a bit more analysigit= a + /a, but this should be
straightforward.

4. GENERAL n WITH b < (1 — a)/+/(n): DYNAMICAL BEHAVIOR ANALYSIS
(STEVE)

Below we analyze the dynamical behavior for any= 2, provided that < (1 —
a)/+/(n). There are probably numerous ways of showing that, in this case, all iterates
converge to the trivial fixed point. The following proof seems as good as any. It relies
on the following lemma:

Lemma 4.1. Leta,b € (0,1) withb < (1 — a)/+/(n), and let\; > X, denote the

ace nbp ),wherea,ﬁ,’y,é € (0,1). Then—1 < A\, Ag <

eigenvalues of the matrlé by ad

1.

Proof. The sum of the eigenvalues is the trace of the matrix (which(dis+ §), and
the product of the eigenvalues is the determinant (whialtis§ — nb?3v). Thus the
eigenvalues satisfy the characteristic equation

N —a(a+ 0N+ (a®ad — nb*B7). 4.1)
The eigenvalues are therefore
ala+0) £ y/a*(a+6)? —4(a*ad —nb?0y)  ala+0) £ \/a*(a— )2 + 4nb? [y

2 2

(4.2)
As the discriminant is positive, the eigenvalues are real. Sifieetr ) > 0, we have
|Xo| < A\q, where

ala+6) + y/a?(a — 6)2 + 4nb? By

OS)\lz 9

(4.3)
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As 36 < 1,nb* < (1 —a)? andy/u + v < y/u + /v for u,v > 0 we find
ala+6) + v/a2(a — §)2 + /4(1 — a)?

A1 5
_ala+9) +ala—6+2(1 —a)
B 2
_ 2amax(a,0) +2(1 —a)
B 2
= 1— (1 —-—max(a,d))a < 1, (4.4)
where the last claim follows from, a, 6 € (0, 1). d

Theorem 4.2. Letn > 2. Assumé < (1 — a)/+/n. Then there is only one valid fixed
point, the trivial fixed point (which may occur with multiplicity greater than 1). Further,
iterates of any point converge to the trivial fixed point.

Proof. We shall prove this by using the Mean Value Theorem and an eigenvalue analysis
of the resulting matrix.

We have f(<“)) - (1_(1—aU)(1—bv)") (4.5)
v))  \1-(1-a)(l-bu) ) |

c@::u—w(8)+t(§),d@::<§>. (4.6)

Thusc(t) is the line connecting the trivial fixed pointté g ) with ¢(0) = ( 0 )

0
ande(1) = ( ‘; ) Let
1 —(1—atz)(1l—bty)"

Fy = siett) = (47T T, (@.7)

Then simple algebra (or the chain rule) yields
s a(l=0bty)™ nb(1— atz)(1l — bty)" x
Ft) = ( b(1 — aty) a(l — btxu) y ) (4.8)

We now apply the one-dimensional chain rule twice, once tactheordinate func-
tion and once to thg-coordinate function. We find there are valugsandt¢, such
that

(D)) - (st i) ()
To see this, look at the-coordinate ofF (¢): h(t) = 1 — (1 — atx)(1 — bty)". We(r?;\a/)e

h(1) — h(0) = h(1) = K'(t1)(1 — 0) for somet;. As
R'(t1) = ax(l—btyy)" 4+ nby(l — atyx)(1 — bt1y)" !

= (a(l =bt1y)", nb(l —atiz)(1 —btyy)" ") - ( ;j ) ,  (4.10)

Let
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the claim follows; a similar argument yields the claim for gheoordinate (though we
might have to use a different valuefand thus denote the value arising from applying
the Mean Value Theorem here by).

We therefore have

((3)) = Gz ) ()
= A(a,b,x,y,t,ts) ( “;" > , (4.11)

To show thatf is a contraction mapping, it is enough to show that, foreall with

b < (1—-a)/y/nandallz,y € [0,1] that the eigenvalues od(a,b, z,y,t;,t2) are

less than 1 in absolute value; however, this is exactly what Lemma 4.1 gives (note our
assumptions imply that = (1 — bt;y)" throughd = (1 — btyx) are all in(0, 1)). Let

us denote\ . (a, b) the maximum value ok, for fixed a andb as we varyt, ts, x,y €

[0,1]. As we have a continuous function on a compact set, it attains its maximum and
minimum. As); is always less than 1, so is the maximum. Here it is important that we
allow ourselves to hava, ¢, € [0, 1], so that we have a closed and bounded set; it is
immaterial (from a compactness point of view) that € (0, 1) as they are fixed. Itis
important that) < a, b < 1, as this ensures that 3, v, < 1 and so we have the strict
inequalities claimed in Lemma 4.1. For any mathik we have||Mv|| < [Apaxl||v

(3 )] < Amtanr|[(5)]

as\mnax(a,b) < 1 we have a contraction map. Therefore any non- erjo ) iterates

; (4.12)

to the trivial fixed point ifb < (1 — a)/y/n andn > 2. In particular, the trivial fixed
point is the only fixed point (if notA(a, b, z, y, t1,t2)v = v for v a fixed point, but we
know || A(a, b, z,y, t1,t2)v|| < ||[v]| if vis not the zero vector). O

5. GENERAL n WITH b > (1 — a)/+/(n): DYNAMICAL BEHAVIOR ANALYSIS
(STEVE)

5.1. Nature of the fixed points. We first analyze the nature of the fixed points. The
following lemma will be useful.

Lemma5.1. Leta,b € (0, 1), and set
a nb
- (nm). 5

NG

| ,and

Then the eigenvalues dfare a + b+/n, with corresponding eigenvect<<r

a — by/n, with corresponding eigenvecto{r _\1/% ) . We may write any vectc<r ; )

() = o) ()« Gram) (V1) @2
Ifb> (1—a)/y/nthena+by/n > 1.



THOUGHTS ON SPECIAL MAPS RELATED TO MODELLING INFECTIONS 11

Proof. The above claims follow by direct computation. It is easiest to wiites

_ 0 vn\ _
A_a]+b\/ﬁ(1/ﬁ 0 ) = al + by/nB, (5.3)
as the eigenvalues and eigenvector8dre easily seen by inspection. O

Remark 5.2. The two eigenvectors are linearly independent, and thus a basis. Note

that any vecton = ( z ) with positive coordinates will have a non-zero component

vn

1
eigenvectors here, we will not need the exact values of the eigenvectors below. From the
Perron-Frobenius theorem we know that the largest (in absolute value) eigenvalue is
positive and the corresponding eigenvector has all positive entries (because all entries
in our matrix are positive).

Theorem 5.3. Assumen > 2, a,b € (0,1) andb > (1 — a)/+/n. Then there is a
0
0
iterate ofv by f is more thanp units form the trivial fixed point. In other words, the
trivial fixed point is repelling.

in the direction. While we were able to explicitly compute the eigenvalues and

p = p(a,b,n) > 0 such that ifv = ( z ) # has||v|| < p then eventually an

Proof. We must show that if|v|| is sufficiently small then there is am such that
1 (@) > [[v]l, wheref®(v) = f(f(v)) and so on.
We have

f((v) = ()
(3 0)(2) e ((515) e

In other words, there is some constah{depending om, a andb) such that the error
. . . U . a nb . u o\ -
in replacingf acting on( ; ) by the linear mapA = ( b 4 ) acting on( v ) is

atmost(JH(u)
v

To show that eventually an iterateof= z is further from the trivial fixed point

2
. Thus if( Z ) has small length, the error will be negligible.

thanwv, we argue as follows: we replageby A, and since one of the eigenvalues is
greater than one eventually an iterate will be further out. The argument is complicated
by the need to do a careful book-keeping, as we must ensure that the error terms are
negligible.

Let \; = a + by/n > 1 andy = a — by/n (Note|\y| < A\; as we have assumed
a,b > 0). We may write\ = 1+ 7, with 0 < n < y/n. Our goal is to prove an equation
of the form

e <o (355z) (1)« (353m) (FF) 2o
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We often takem even, so that\]' is non-negative. We may write = r cos# and
y = rsind, with r < p (later we shall determine how largamay be).
We introduce some notation. By(z) we mean avecto( 2 ) suchthatz |, |z| <
z. Letvy = v andwvg,1 = f(vg). Thus
v = f(v) = Avg + E(Cr?), (5.6)

as||vw||? = r?; here E(Cr?) denotes our error vector, which has components at most
Cr?. If ||v1]| > r then we have found an iterate which is further from the trivial fixed
point, and we are done. If ngty, || < r.

Assume||v;|| < r. Then

vy = flv)) = Av, + E(Cr?). (5.7)

But Av, = Avy + AE(Cr?), with E(Cr?) denoting a vector with components at most
Cr?. As the largest eigenvalue dfis )\, we haveAE(Cr?) = E(\,Cr?). Thus

= A%y + E(\Cr? + Cr?). (5.8)
If ||v2]| > r we are done, so we assume&|| < r. Then
v3 = f(v) = Avy + E(Cr?). (5.9)
But Avy, = A%vy + AE(MCr? + Cr?). As
AEMCT? +Cr?) = E(XNCr? + \Cr?), (5.10)
we find
= Avg + E(NCr? + M\ Cr* + Cr?). (5.11)

If there is somen such that|v,,|| > r then we are done. If not, then for aill we
have

m—1
A —1
_ m k 2 _ m 1 2
Um_AUO‘i_E(%)\lCT) _AUO+E(FCT) (512)
Using Lemma 5.1 (writingg = v as a linear combination of the eigenvectors and
applying A) yields

o () () 2 (os) (1)

AP —1
E (2 -COr?) . 5.13
ve (] o) 5.13)

We shall consider the case > y; the other case follows similarly. Let be the
smallest even integer such thet > 10; as\; < 1 + y/n < 2y/n we have for such
m that \T* < 40n. We consider the:-coordinate ofv,,. Asm is even andr > y the
contribution from

(1e5) () - (1-5) (1) o

is at least\? - Y > 52 the contribution frome ( 2) '

2Vn
< % .Or? < 40(;7’”‘ r. By assumption; < p. Letp < . Then ther-coordinate

2

4000C
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of v, is at leastdz (sincex > y, x > r/v/2). Thus||v,||? > 1622 > 8(2? + y?) =
8/|v||* = 8r?, which contradicts|v,,|| < r for all m.

If insteady > = then the same choices work, the only difference being that we now
look at they-coordinate. O

Conjecture 5.4. Letn = 2 and assume, b € (0,1) withb > (1 — a)/y/n. The map
f is a contraction map in a sufficiently small neighborhood of the unique non-trivial

valid fixed pointy; = ( f/f ) Thus, ifv = ( ‘; ) is sufficiently close toy, then the
f
iterates ofv converge tay;.

As of now, | can only prove this numerically. Unfortunately the linear approximation
of f near the non-trivial valid fixed point; is a horrible mess, involving numerous
complicated expressions efandb. There are some things | can do to clean it up a bit,
but not enough to get something which is algebraically transparent.

Whenn = 2 we have

_ by _ (d-a)yy
A abxy’ = b(1 —ayy) (5.15)
Using f << z]{ )) = ( z; ) yields
1-— yf 2 1-— Jif
1 — = 1— = } A
(I —bay) = 1= 2y (1 —byy) = az; (5.16)

These relations can help simplify some of the formulas; the problem is the formula for
xy in terms ofa andb is a nightmare:

2a% 4+ 0% — 2a%(2 + b) + a(2 + 2b — 20?) — by /b +4a(l — b)(a — 1 — b)?

T = 2ab(a® + 1% — a(1 + 2b))
(5.17)
The resulting fixed point matrix is
_ ([ a(l—byp)?* 2b(1 — axy;)(1 — byy)
Ap = < b(1 — ayy) a(l —bxy) : (5.18)

We want to show the largest eigenvalue is less than 1 in absolute value bwhen
(1-a)/v2.

We know that the critical line i8 = (1 —a)/v/2 = 1/v/2 —a/+/2. I've found a good
way to numerically investigate the eigenvaluesigfis study the eigenvalues along the
lineb = (m — a)/v/2, with 1 < m < 1 ++/2. This gives us a family of parallel lines.
For a given (valid) choice af,, we havemax(0,m — v/2) < a < 1. Below (Figures 1
through 5) is an illustrative set of plots of the largest eigenvalue for 5 different choices
of m.
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FIGUrRE 1. Distribution of the largest eigenvalue df; along the line
b= (m—a)/V2,withm =1+ /2/6 ~ 1.2357.

16
10

_osf

I I I I
0.4 0.6 0.8 10

-051-

10
—16

FIGURE 2. Distribution of the largest eigenvalue df; along the line
b= (m—a)/Vv2,withm =1+ 2v2/6 ~ 1.4714.
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FIGURE 3. Distribution of the largest eigenvalue df; along the line
b= (m—a)/V2, withm =1+ 32/6 ~ 1.7071.

Itis crucial thatm > 1, asm = 1 leads to a coalescing of fixed points (i.e., we have
the trivial fixed point with multiplicity two, and the third fixed point is not valid). In
Figure 6 we plot the behavior df — \;(a, 1 — +/2/100), where\(a, b) is the largest
eigenvalue of4;. Note that the largest eigenvalue is very close to 1, but always less
than 1, for this value ofn.

Note in Figure 6 that; is small, especially for large. This indicates that perhaps
whena is close to 1 and = (m — a)/+/2 that there is a hope of proving the largest
eigenvalue is strictly less than

In fact, it is easy to show that if andb are close td, thenz; is close to 1 as well
(which immediately implies thaj; is also close td). This implies that the entries of
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FIGURE 4. Distribution of the largest eigenvalue df; along the line
b= (m—a)/V2,withm = 14 4v/2/6 ~ 1.9428.
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FIGURE 5. Distribution of the largest eigenvalue df; along the line
b= (m—a)/Vv2, withm =1+ 5v2/6 ~ 2.1785.

ﬂ\

0.05
0.04 - \

\
0.03 \
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0.011

FIGURE 6. Distribution of 1 minus the largest eigenvalue4f along
the lineb = (m — a)/v/2, withm = 1 4 /2/100 ~ 1.0141.

Ay are all positive numbers close to 0. A simple calculation shows
((1—bys)* + (1 —axy))a
2

n V(1 =bys)? — (1 — axy)) a® + 86*(1 — by;)(1 — axy)(1 — ayy)
2

)\1 (CL, b) =

(5.19)

If a,b, z; andy, are all close td, then;(a, b) will be small. We have shown
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Lemma5.5. Letn = 2, a,b € (0,1) and assumé > (1 — a)/+/2. Then ifa andb are
sufficiently large, therf is a contraction map near the non-trivial valid fixed point (i.e.,
the non-trivial valid fixed point is attracting).

With some work we can determine how ‘clogseandd need to be td.

5.2. Existence of a non-trivial, valid fixed point (new results: Steve).We show in

this subsection that if > (1—a)/+/n then there is a unique, non-trivial valid fixed point
whena,b € (0,1). The proof involves looking at the intersection of two curves, one
where ther-coordinate is unchanged under applyifigand one where thg-coordinate

is unchanged after applyinfg One of these curves is concave up, the other convex up.
The proof is completed by the following lemma.

Lemma 5.6. Lethy, he : [0,1] — [0, 1] be twice continuously differentiable functions
such thath, (x) is convex uphs(z) is concave uph;(0) = hy(0) = 0 and hy(z) #
ho(x) for x > 0 sufficiently small. Then for at most two choiceszoflo we have
]’Ll(I) = hQ(I)

Proof. The claim is trivial if there is only one point of intersection, so assume there are
at least two. Without loss of generality we may assyme 0 is the first point above

zero whereh; and h, agree. Such a smallest point exists by continuity, as we have
assumed; (x) # ho(x) for x > 0 sufficiently small; if there are infinitely many points

x, where they are equal, lpt= lim inf,, ,, > 0. (We technically do not need to prove

this —we could take any two points where the functions agree and show there cannot be
a third point larger than the first two where the functions agree.)

Becauseh, () is convex up ) (z) is increasing. By the mean value theorem there
is a pointe; € (0, p) such thath)(c1) = (hi(p) — h1(0))/(p — 0) = hy(p)/p. ASh] is
increasing, we have/ (p) > hi(cy); further, b (z) > hi(cy) for all x > p. As hy(x)
is concave uphi(x) is decreasing. Again by the mean value theorem there is a point
c2 € (0,p) such that),(ca) = ((ha(p) —h2(0))/(p—0) = ha(p)/p. As b} is decreasing,
we haveh),(p) < hh(c2), and in facthy(z) < hi(c2) for all x > p. Buthl(c1) = hi(c)
(sincehi(p) = ha(p)), SOR|(x) > hi(x) for all z > p. Thus there cannot be another
point of intersection aftep. O

Theorem 5.7. Assumer, b € (0,1), b > (1 — a)/y/n andn > 2. Then there exists a
unique non-trivial, valid fixed point.

Proof. We prove this through repeated applications of the Intermediate Value Theorem
and continuity. Let

x g1(z,y) x x
= = - . 5.20
g((y» (92@@/)) f((@/)) (y) (520
Note( ?‘j ) is a fixed point if and only iy (< z >) = 0.
We first look for partial fixed points, namely points where either ther the y-

coordinate is unchanged. These correspond to fin{inig) with ¢ (z,y) = 0 or

g2(x,y) = 0. We first analyze the set of paifs, y) € [0, 1]*> whereg, (z,y) = 0. We
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have

gi(z,y) = (1= (1—ax)(1—0by)")— . (5.21)
We immediately see that (0,0) = 0, ¢:(0,y) > 0 fory € (0, 1], andg,(1,y) < 0 for
y € [0,1]. Thus by the Intermediate Value Theorem, for each (0, 1] there is ap; (y)

such thayy; (¢1(y),y) = 0 ande, (y) € [0, 1]. Itis easy to see that, (y) is a continuous
function ofy; in fact,

1 (1 —by)"
¢1<y> - 1 — a(1 B by)”
sy - Mizal-by (5.22)

(1—a(l—by)")?

Note; (y) € [0,1]: itis clearly positive, and=< > 1 for ¢ > 0 only whena > 1. As
a,b € (0,1), ¢1(y) > 0. Thuse, (y) is strictly increasing, ang, (0) = 0. Further, we
have for smally that¢, (y) ~ ;“2y. To see this, we notel — by)" = 1 — nby + O(y?)
and substitute into (5.22). To aid in the analysis below, it is more convenient to re-write
this asy ~ %:p (as¢;(y) > 0 we may use the inverse function theorem to wyites a
function of x).

We analyzey,(x, y) = 0 similarly. We find

go(z,y) = 11— (1 —ay)(1 —bx))—y = 0. (5.23)

Note g»(0,0) = 0, go(z,0) > 0 for z € (0, 1], andgs(z,1) < 0 for z € [0, 1]. Solving
yields
bx

y = ¢a(z) = T atabr (5.24)
This is clearly continuously differentiable, and
b(1 —a)
/ = . 2
¢2($) (1—a+aba:)2 >0 (5 5)

Thusg,(x) is an increasing function of. Further, for smalk we havey ~ ﬁx

We now use the assumption that> (1 — a)/y/n. Near the origin,¢;(y) looks
b

like the liney = =2z, while near the originy,(z) looks like the liney = Zx. If
%ﬁ < ﬁ thengs () is abovep, (y) near the origin. Cross multiplying shows that this
condition is equivalentt&’* > (1—a)/n, orb > (1—a)/+/n. Thus, fora,b € (0,1) and
b > (1—a)/\/n, the two curves = ¢;(y) andy = ¢,(x) have at least two intersections
in [0, 1]%; one is the trivial fixed point while the other is a non-trivial, valid fixed point.
The existence of the second point of intersection follows from the intermediate value
theorem (near the origin = ¢,(z) is abover = ¢;(y); however, ax — 1 we have
¢o(z) tends to a number strictly less than 1. Thus the curve ¢.(x) hits the line
z = 1 below (1,1). Similarly the curver = ¢(y) hits the liney = 1 to the left of
(1,1). Thus the two curves flip as to which is above the other, implying that there must
be one point where the two curves are equal. This point is clearly a fixed point.

We now show there are only two intersections (i.e., there is a unique, non-trivial valid
fixed point). The proof follows from showing thgt= ¢-(x) is concave up (concave

increasing) and: = ¢,(y) is convex up (convex increasing). There are already two
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points of intersection, and by Lemma 5.6 there can be at most two points of intersection.
Straightforward differentiation and some algebra gives

" —2ab*(1 — a)
2(2) (1 —a+ abx)? <0
"y) = Pl —a)(1=by)" 7 (n—1+a(l —by)" +a(n+1)(1 -by)") “o

(1 —a(l—by)")?
(5.26)

Thusy = ¢4(z) is concave up (since the second derivative is always negative and the
first derivative is always positive: compare this to the standard pargbela x> when

x < 0). As a function ofy, x = ¢;(y) is also concave up (since its first derivative is
positive and its second derivative is negative); however, we are interested i ' (z)

(the inverse function exists because the first derivative is positive).(If) is concave

up as a function of then¢; *(z) is convex up as a function of This follows because

we are basically reflecting about the= y line, and this switches us from concave to
convex (the function is obviously still increasing). The claim now follows from Lemma
5.6. U

In Figures 7 and 8 we plat = ¢1(y) andy = ¢o(z) fora = .4, b = .5 and
n € {2,5}. As should be the case, the intersections of the two curves correspond to the

fixed points (obtained by solving (( g )) = < z )).
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021

I I "
0.5 10 15 20

FIGURE 7. Plotofz = ¢(y) andy = ¢a(x) fora = 4, b = .5 and
n = 2. The fixed point i5.350, .261).

Remark 5.8 (VERY TENTATIVE). We can try and use the above argument to show
the fixed point is attracting, at least locally. The two curves ¢,(y) andy = ¢»(z)
break|0, 1]* into four pieces.

(1) The region undek,(x) and to the left ofp,(y): in this region the effect of
applying f is to increase the values of bathandy.
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FIGURE 8. Plot ofx = ¢,(y) andy = ¢o(z) fora = 4, b = .5 and
n = 5. The fixed point i5.877, .565).

(2) The region under,(z) and to the right ofp,(y): in this region the effect of
applying f is to decrease the value ofand increase the value gf

(3) The region above,(z) and to the right ofp,(¢): in this region the effect of
applying f is to decrease both andy.

(4) The region aboves,(z) and to the left ofy,(y): in this region the effect of
applying f is to increaser and decreasg.
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