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1. INTRODUCTION

One of the most important functions in number theory is π(x), the number of primes at most x.
Many of the proofs of the infinitude of primes fall naturally into one of two categories. First, there
are those proofs which provide a lower bound for π(x). A classic example of this is Chebyshev’s
proof that there is a constant c such that cx/ log x ≤ π(x). Another method of proof is to deduce a
contradiction from assuming there are only finitely many primes. One of the nicest such arguments
is due to Furstenberg, who gives a topological proof of the infinitude of primes. As is often the case
with arguments along these lines, we obtain no information about how rapidly π(x) grows.

Sometimes proofs which at first appear to belong to one category in fact belong to another. For ex-
ample, Euclid proved there are infinitely many primes by noting the following: if not, and if p1, . . . , pN

is a complete enumeration, then either p1 · · · pN +1 is prime or else it is divisible by a prime not in our
list. A little thought shows this proof belongs to the first class, as it yields there are at least k primes
at most 22k , that π(x) ≥ log log(x).

For the other direction, we examine a standard ‘special value’ proof; see [5] for proofs of all the
claims below. Consider the Riemann zeta function

ζ(s) :=
∞∑

n=1

1

ns
=

∏
p prime

(
1− p−s

)−1
,

which converges for <s > 1; the product representation follows from the unique factorization prop-
erties of the integers. One can show ζ(2) = π2/6. As π2 is irrational, there must be infinitely many
primes; if not, the product over primes at s = 2 would be rational. While at first this argument may
appear to belong to the second class (proving π(x) tends to infinity without an estimate of its growth),
the purpose of this note is to show that it belongs to the first class, and we will obtain an explicit,
though very weak, lower bound for π(x). We deliberately do not attempt to obtain the optimal bounds
attainable through this method, but rather concentrate on proving the easiest possible results which
best highlight the idea. We conclude by showing how our weak estimates can be fed back into the
argument to obtain (infinitely often) massive improvement over the original bounds; our best results
are almost as good as the estimates from Euclid’s argument.

Our lower bounds for π(x) use the fact that the irrationality measure of π2/6 is bounded. An upper
bound on the irrationality measure of an irrational α is a number ν such that there are only finitely
many pairs p and q with ∣∣∣∣α−

p

q

∣∣∣∣ <
1

qν
.

The irrationality measure µirr(α) is defined to be the infimum of the bounds and need not itself be a
bound. Liouville constructed transcendental numbers by studying numbers with infinite irrationality
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measure, and Roth proved the irrationality measure of an algebraic number is 2. Currently the best
known bound is due to Rhin and Viola [7], who give 5.45 as a bound on the irrationality measure
of π2/6. Unfortunately, the published proofs of these bounds use good upper and lower bounds for
dn = lcm(1, . . . , n). These upper and lower bounds are obtained by appealing to the Prime Number
Theorem (or Chebyshev type bounds); this is a problem for us, as we are trying to prove a weaker
version of the Prime Number Theorem (which we are thus subtly assuming in one of our steps!).1

In the arguments below we first examine consequences of the finiteness of the irrationality mea-
sure of π2/6, deriving lower bounds for π(x) in §2. Our best result is Theorem 3, where we show
µirr(π

2/6) < ∞ implies that there is an M such that π(x) ≥ log log x
2 log log log x

−M infinitely often.
We conclude in §3 by describing how we may modify the standard irrationality measure proofs to

yield weaker irrationality bounds which do not require stronger input on dn then we are assuming.
In particular, Theorems 2 and 3 are unconditional (explicitly, we may remove the assumption that
the irrationality measure of π2/6 is finite through a slightly more involved argument). We end by
showing how the proofs of the irrationality measure bounds can be modified to prove significantly
better bounds; in Theorem 4 we show that for any ε > 0 the irrationality measure arguments yield
π(x) ≥ x/ log1+ε x for infinitely many x.2

2. LOWER BOUNDS FOR π(x)

Define T (x, k) by T (x, k) = x∧(x∧(x∧(· · ·∧ x) · · · )), with x occurring k times.

Theorem 1: As µirr(π
2/6) < 5.45, there exists an N0 so that, for all k sufficiently large, π(T (N0, 2k)) ≥

k.

Proof. For any integer N let pN and qN be the relatively prime integers satisfying

pN

qN

=
∏
p≤N

(
1− 1

p2

)−1

=
∏
p≤N

(
1 +

1

p2 − 1

)
.

Assume there are no primes p ∈ (N, f(N)], where f(x) is some rapidly growing function to be
determined later. If f(N) is too large relative to N , we will find that pN/qN is too good of a rational
approximation to π2/6, and thus there must be at least one prime between N and f(N). Under our
assumption, we find

∣∣∣∣
pN

qN

− π2

6

∣∣∣∣ =
pN

qN

∣∣∣∣∣∣
1−

∏

p>f(N)

(
1 +

1

p2 − 1

)∣∣∣∣∣∣
.

1For another example along these lines, see Kowalski [4]. He proves π(x) À log log x by combining the irrationality
measure bounds of ζ(2) with deep results on the distribution of the least prime in arithmetic progressions. See also [8],
where Sondow proves that pn+1 ≤ (p1 · · · pn)2µirr(1/ζ(2)).

2With additional work, we can replace o(x/ log x) with cx/ log x for some c depending on certain constants in the
irrationality measure proofs. Using the current best values, we may take c = .426.
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Clearly pN/qN ≤ π2/6, and

∏

p>f(N)

(
1 +

1

p2 − 1

)
= exp


log

∏

p>f(N)

(
1 +

1

p2 − 1

)


≤ exp


 ∑

n>f(N)

log

(
1 +

1

(n− 1)2

)


≤ exp


 ∑

n>f(N)

1

(n− 1)2


 ≤ exp

(
1

f(N)2
+

1

f(N)

)

(the last inequality follows by the replacing the sum over n ≥ f(N) + 2 with an integral). Standard
properties of the exponential function yield

∣∣∣∣
pN

qN

− π2

6

∣∣∣∣ ≤
π2

6

∣∣∣∣1− exp

(
1

f(N)2
+

1

f(N)

)∣∣∣∣ ≤
10

f(N)
.

The largest qN can be is N !2, which happens only if all integers at most N are prime. Obviously
we can greatly reduce this bound, as the only even prime is 2; however, our purpose is to highlight the
method by using the most elementary arguments possible. If we take f(x) = (x!)14, we find (for N
sufficiently large) that ∣∣∣∣

π2

6
− pN

qN

∣∣∣∣ ≤
10

f(N)
<

1

q6
N

; (2.1)

however, this contradicts Rhin and Viola’s bound on the irrationality measure of π2/6 (µirr(π
2/6) <

5.45). Thus there must be a prime between N and f(N). Note f(N) ≤ N14N ≤ (14N)14N for large
N . Letting f (k)(N) denote the result of applying f a total of k times to N , for N0 sufficiently large
we see for large k that there are at least k primes at most T (14N0, 2k). ¤

The inverse of the function T (N,−) is called the log∗ function to base N . It is the number of times
one can iterate the logarithm without the number becoming negative and leaving the domain of the
logarithm. It is this extremely slowly growing function that the above theorem yields as a lower bound
for π(x). The base was determined by the irrationality bound and unspecified (but constructive) bound
on the size of the finite number of approximations violating the irrationality bound.

Of course, this bound arises from assuming that all the numbers at most x are prime (as well as
some weak estimation); however, if all the numbers at most x are prime then there are a lot of primes,
and we do not need to search for a prime between N and f(N)! This interplay suggests that a more
careful argument should yield a significantly better estimate on π(x), if not for all x then at least infin-
itely often. We will use an upper bound on π(x) with the inequality qN ≤ ∏

p≤N(p2 − 1) ≤ N2π(N).
While isolating the true order of magnitude of our bound is difficult, we can easily prove the following:

Theorem 2: The finiteness of the irrationality measure of π2/6 implies the existence of an M > 0
such that for infinitely many x we have π(x) ≥ log log log(x)−M .

Proof. We choose our constants below to simplify the exposition, and not to obtain the sharpest results.
Let b be a bound on the irrationality measure of π2/6. The theorem trivially follows if π(x) ≥
(log x)e−1/4b infinitely often, so we may assume that π(x) ≤ (log x)e−1/4b for all x sufficiently
large. Thus the denominator qN in our rational approximation in equation (2.1), when we consider
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primes at most N for N sufficiently large, has the bound

qb
N ≤ N2bπ(N) = exp(2bπ(N) log N) ≤ exp

(
(log N)e

2

)
≤ exp (log N)e

10
.

Thus, if f(N) = exp(log(N)e), we have checked the right-hand inequality of equation (2.1), namely
that 10/f(N) < 1/q6

N . This cannot hold for N sufficiently large without violating Rhin and Viola’s
bound on the irrationality measure, unless of course there is a prime between N and f(N). Thus there
must be a prime between N and f(N) for all N large.

Define xn by x0 = ee and iterating by applying f , so that xn+1 = f(xn) = exp((log xn)e). Then
log xn+1 = (log xn)e, so log xn = (log x0)

en
= exp en or xn = exp(exp en). Once xM is sufficiently

large so that the above argument applies, there is a prime between every pair of xi, so there are at least
n−M primes less than xn. ¤

The simple argument above illustrates how our result can improve itself (at least for an increasing
sequence of x’s). Namely, the lower bound we obtain is better the fewer primes there are, and if
there are many primes we can afford to wait awhile before finding another prime. By more involved
arguments, one can show that π(x) ≥ h(x) infinitely often for many choices of h(x). Sadly, however,
none of these arguments allow us to take h(x) = log log x. Our attempts at obtaining such a weak
bound gave us a new appreciation of the estimate from Euclid’s argument! Our best result along these
lines is the following:

Theorem 3: The finiteness of the irrationality measure of π2/6 implies the existence of an M > 0
such that for infinitely many x we have π(x) ≥ log log x

2 log log log x
−M .

Proof of Theorem 3. The proof is similar to that in Theorem 2. As before, let b be a bound on the
irrationality measure of π2/6. We assume that π(x) ≤ (log log x)/4b for all sufficiently large x, as
otherwise the claim trivially follows. We show that there is a prime between xn and xn+1, where
xn = exp(exp an) and the sequence an is defined by an+1 = an + log an. It is easy to show that an

grows like n log n; from there the growth of xn proves the theorem.
Consider h(x) = log log log x/ log log x. Note logh(x) x = log log x, so our assumption can be

rewritten as π(x) ≤ (logh(x) x)/4b for large x. Therefore, if N is sufficiently large we have the bound

qb
N ≤ N2bπ(N) = exp(2bπ(N) log N) ≤ exp

(
logh(N)+1 N

2

)
≤

exp
(
logh(N)+1 N

)

10
.

Setting f(N) = exp(logh(N)+1 N), we see that for large N there must be a prime between N and
f(N). We define xn by iterating f (so xn+1 = f(xn)), starting at x2 = exp(exp(e)).

The recursion can be rewritten as log log xn+1 = (h(xn)+1) log log xn. In terms of an = log log xn,
this is an+1 =

(
log an

an
+ 1

)
an = an + log an. For an upper bound, we have an ≤ 2n log n. We prove

this by induction. For the base case, a2 = e < 4 log 2. If an ≤ 2n log n with n ≥ 2, then

an+1 ≤ 2n log n + log(2n log n) < (2n + 1) log n + log n < (2n + 2) log(n + 1).

For a lower bound, note that log ak ≥ 1 so an ≥ n. This improves to an+1 − an = log an ≥ log n.
Therefore an+1 ≥

∑n
k=1 log k >

∫ n

1
log x dx = n log n − n + 1. Thus n log n − n < an ≤ 2n log n.

Therefore π(xn) ≥ n − M , where xM is large enough that the assumed bound on π(xM) applies.
To derive our asymptotic conclusions, we need to know the inverse of the sequence xn. For n large
there are at least n − M primes that are at most xn = exp(exp an) ≤ exp(exp(2n log n). Letting
x = exp(exp(2n log n), we find n is at least log log x/2 log log log x. Therefore, for infinitely many
x we have π(x) ≥ log log x/2 log log log x − M (where we subtract M for the same reasons as in
Theorem 2). ¤
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Remarks: The lower bound from Theorem 3 is slightly weaker than the one from Euclid’s argu-
ment, namely that π(x) ≥ log2 log2 x. It is possible to obtain slightly better results by assuming
instead that π(x) ≤ (log log x)c(x) / b; a good choice is to take c(x) = log g(x) / log(g(x) log g(x))
with g(x) = log log x/ log log log x. The sequence an+1 = an + log an which arises in our proof
is interesting, as the Prime Number Theorem states the leading term in the average spacing be-
tween primes of size x for large x is log x! Thus an is approximately the nth prime pn; for example,
a1000000 ∼ 15479041 and p1000000 = 15485863, which differ by about .044%.

3. BOUNDS FOR THE IRRATIONALITY MEASURE OF π2/6

We briefly describe how to modify standard arguments on the irrationality measure of ζ(2) = π2/6
to make Theorems 2 and 3 unconditional. As always, we merely highlight the ideas and do not
attempt to prove optimal results. We follow the argument in [6], and by A(x) = o(B(x)) we mean
limx→∞ A(x)/B(x) = 0. With dn = lcm(1, . . . , n), they show the existence of sequences {an}, {bn}
such that

an − bnζ(2) = d2
n

∫ 1

0

∫ 1

0

Hn(x + y, xy)dxdy

(1− xy)n+1
= d2

nIn

for a sequence of polynomials Hn(u, v) with integer coefficients, with ρ, σ > 0 such that
(1) lim supn→∞

log |bn|
n

≤ ρ and (2) limn→∞
log |an−bnζ(2)|

n
= −σ. Then µirr(ζ(2)) ≤ 1 + ρ

σ
(this is

their Lemma 4, and is a special case of Lemma 3.5 in [2]). Unfortunately (for us), they use the Prime
Number Theorem to prove that dn = exp(n + o(n)). From this they deduce that there exist constants
a and b such that for any ε > 0, (i) exp((a + 2 − ε)n) ≤ d2

nIn ≤ exp((a + 2 + ε)n) and (ii) |bn| ≤
exp((b + 2 + ε)n). Note (i) and (ii) imply (1) and (2) for our sequences {an} and {bn} with ρ = b + 2
and σ = 2−a, which gives µirr(ζ(2)) ≤ (a− b)/(a+2). It is very important that the upper and lower
bounds of dn are close, as the limit in (2) needs to exist.

We now show how to make Theorems 2 and 3 independent of the Prime Number Theorem (ie, we
do not assume the irrationality measure of ζ(2) is finite, as the published proofs we know use the
Prime Number Theorem). Assume π(x) ≤ log x for all x sufficiently large; if not, then π(x) > log x
infinitely often and Theorems 2 and 3 are thus trivial. Under this assumption, we have 1 ≤ dn ≤
exp(log2 n). The lower bound is clear. For the upper bound, note the largest power of a prime p ≤ n
that is needed is blogp nc ≤ log n/ log p. Thus

dn ≤
∏
p≤n

plog n/ log p = exp

(∑
p≤n

log n

log p
· log p

)
= exp(π(n) log n); (3.1)

the claimed upper bound follows from our assumption that π(x) ≤ log x. We now find for any ε > 0
that (i’) exp((a − ε)n) ≤ d2

nIn ≤ exp((a + ε)n + 2 log2 n) and (ii’) |bn| ≤ exp((b + ε)n + 2 log2 n).
We again find that (1) and (2) hold, and µirr(ζ(2)) ≤ (a− b)/a. Using the values of a and b from their
paper, we obtain (under the assumption that π(x) ≤ log x) that µirr(ζ(2)) is finite. Thus Theorems 2
and 3 are independent of the Prime Number Theorem.

Using the values of a and b in [6], we can prove that π(x) is quite large infinitely often.

Theorem 4: Let g(x) be any function satisfying g(x) = o(x/ log x). Then infinitely often π(x) ≥
g(x). In particular, for any ε > 0 we have π(x) ≥ x/ log1+ε x infinitely often.

Proof. We assume π(x) ≤ g(x) for all x sufficiently large, as otherwise the claim is trivial. In [6]
numerous admissible values of a and b are given (and the determination of these bounds does not use
any estimates on the number of primes); we use a = −2.55306095 . . . and b = 1.70036709 . . . (page
102). From (3.1) we have 1 ≤ dn ≤ exp(π(n) log n). Using π(x) ≤ g(x) we find (i”) exp((a− ε)n)
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≤ d2
nIn ≤ exp((a + ε)n + 2g(n) log n) and (ii’) |bn| ≤ exp((b + ε)n + 2g(n) log n). We again find

(1) and (2) hold, with the same values of a and b. For example, to see that (2) holds we need to show
limn→∞(1/n) log |an − bnζ(2)| = −σ. As an − bnζ(2) = d2

nIn, we have for any ε > 0 that

lim
n→∞

(a− ε)n

n
≤ lim

n→∞
log |an − bnζ(2)|

n
≤ lim

n→∞
(a + ε)n + 2g(n) log n

n
.

Our assumption on g(x) implies that limn→∞
g(n) log n

n
= 0, and thus the limit exists as before. We find

we may take ρ = b and σ = −a, which yields µirr(ζ(2)) ≤ 1− b
a

= 1.666 . . . < 2. As the irrationality
exponent of an irrational number is at least 2 (see [5] for a proof of this and a proof of the irrationality
of π2), this is a contradiction. Thus π(x) cannot be less than g(x) for all x sufficiently large (and thus
infinitely often we beat Euclid by an enormous amount). ¤
Remark: It was essential that the limit in (2) exist in the above argument. If π(x) À x/ log x infinitely
often and π(x) ¿ x/ log1+ε x infinitely often then our limit might not exist and we cannot use Lemma
4 of [6]. Kowalksi [4] notes3 that knowledge of ζ(s) as s → 1 yields π(x) À x/ log1+ε x infinitely
often, which is significantly better than his proof using knowledge of ζ(2) and Linnik’s theorem on the
least prime in arithmetic progressions to get π(x) À log log x. We may interpret our arguments as
correcting this imbalance, as now an analysis of ζ(2) gives a comparable order of magnitude estimate.
It is interesting that the correct growth rate of π(x), namely x/ log x, surfaces in these arguments as
a natural boundary!
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3His note incorrectly mixed up a negation, and the claimed bound of π(x) À x1−ε is wrong.


