BEYOND THE PIGEON-HOLE PRINCIPLE: MANY PIGEONS IN THE SAME BOX

STEVEN J. MILLER

Abstract

Consider N boxes and m balls, with each ball equally likely to be in each box. For fixed k, we bound the probability of at least k balls being in the same box, as N and m tend to infinity. In particular, we show that if $m=N^{\frac{k-1}{k}}$ then this probability is at least $\frac{1}{k!}-\frac{1}{2 \cdot k!^{2}}+O\left(N^{-1 / k}\right)$ and at most $\frac{1}{k!}+O\left(N^{-1 / k}\right)$. We then investigate what happens when k grows with N and m, and show there is negligible probability of having at least N balls in the same box when $m=N^{2-\epsilon}$.

1. Introduction

Dirichlet's Pigeon Hole Principle states that if $N+1$ balls are placed in N boxes, then at least one box must contain at least two balls. We can instead ask how many balls we need (as a function of N) to ensure a 50% (or at least a positive percent independent of N) chance that one box has two balls. This is the classic birthday problem; the probability that $m \leq N$ balls are placed in m different boxes is just

$$
\begin{equation*}
P_{N, m}=\frac{N}{N} \cdot \frac{N-1}{N} \cdots \frac{N-(m-1)}{N}=\frac{N!}{(N-m)!N^{m}} . \tag{1.1}
\end{equation*}
$$

Hence the probability that at least one box has at least two balls is $1-P_{N, m}$. To obtain a positive percent we need $P_{N, m}$ bounded away from 1 ; this occurs when $m \sim \sqrt{N}$. One way to see this is to use Stirling's formula, which says

$$
\begin{equation*}
n!=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+O\left(n^{-1}\right)\right) \tag{1.2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} . \tag{1.3}
\end{equation*}
$$

Thus we find

$$
\begin{align*}
P_{N, m} & \sim \frac{N^{N} e^{-N} \sqrt{2 \pi N}}{(N-m)^{N-m} e^{-(N-m)} \sqrt{2 \pi(N-m)} \cdot N^{m}} \\
& \sim \sqrt{\frac{N}{N-m}}\left(1-\frac{m}{N}\right)^{-(N-m)} e^{-m} \tag{1.4}
\end{align*}
$$

the above is bounded away from 1 when $m \sim \sqrt{N}$.
We consider the more general situation, namely, how many balls are needed to ensure a positive probability of having at least k balls in a box. Here we consider k fixed and $1 \ll m \ll N$, with m and N tending to infinity.

Let $|E|$ denote the probability of an event E, and let $E_{k ; N, m}$ be the event that at least k of the m balls are in one of the N boxes. Our main result is

Theorem 1.1. Let k be fixed. If $m=N^{\frac{k-1}{k}}$, then as $N \rightarrow \infty$ we have

$$
\begin{equation*}
\frac{2 \cdot k!-1}{2 \cdot k!^{2}}+O\left(N^{-1 / k}\right)<\left|E_{k ; N, m}\right|<\frac{1}{k!}+O\left(N^{-1 / k}\right) \tag{1.5}
\end{equation*}
$$

2. Proof of Theorem 1.1

We first establish some notation before proving Theorem 1.1. We fix a pair (N, m) with $1 \ll m \ll N ; N$ and m will tend to infinity. Let $E_{k, i ; N, m}$ denote the event of at least k balls in box i (with N boxes and m balls), and let $E_{k ; N, m}$ denote the event of at least k balls in a box (with N boxes and m balls). Clearly

$$
\begin{equation*}
E_{k ; N, m}=\bigcup_{i=1}^{N} E_{k, i ; N, m} \tag{2.6}
\end{equation*}
$$

However, for N and m even modestly sized, the events $E_{k, 1 ; N, m}, \ldots, E_{k, N ; N, m}$ are not independent. Thus we obtain an upper bound for the probability of at least k of the m balls in one of the N boxes:

$$
\begin{equation*}
\left|E_{k ; N, m}\right|<\sum_{i=1}^{N}\left|E_{k, i ; N, m}\right|=N \cdot\left|E_{k, 1 ; N, m}\right| \tag{2.7}
\end{equation*}
$$

where the last follows from symmetry.
Proof of the Upper Bound in (1.5). Let $F_{n, 1 ; N, m}$ denote the event of exactly n of the m balls being in the first of the N boxes. Then

$$
\begin{equation*}
\left|F_{n, 1 ; N, m}\right|=\binom{m}{n} \frac{1}{N^{n}}\binom{m-n}{m-n}\left(1-\frac{1}{N}\right)^{m-n} \tag{2.8}
\end{equation*}
$$

We first analyze the case when $n=k$, the main term. For $m \gg k$, we find

$$
\begin{equation*}
\left|F_{k, 1 ; N, m}\right|=\frac{1}{k!} \frac{m^{k}}{N^{k}} e^{-m / N}+O\left(N^{-1}\right) \tag{2.9}
\end{equation*}
$$

For all n we can bound $\left|F_{n, 1 ; N, m}\right|$ by $\frac{1}{n!} \frac{m^{n}}{N^{n}}$, and thus

$$
\begin{align*}
\left|E_{k, 1 ; N, m}\right| & =\sum_{n=k}^{m}\left|F_{k, 1 ; N, m}\right| \\
& =\left|F_{k, 1 ; N, m}\right|+O\left(\sum_{n=k+1}^{m}\left|F_{n, 1 ; N, m}\right|\right) \\
& =\frac{1}{k!} \frac{m^{k}}{N^{k}} e^{-m / N}+O\left(\sum_{n=k+1}^{m} \frac{1}{n!}\left(\frac{m}{N}\right)^{n}\right) \\
& =\frac{1}{k!} \frac{m^{k}}{N^{k}} e^{-m / N}+O\left(\frac{m^{k+1}}{N^{k+1}}\right) \tag{2.10}
\end{align*}
$$

Substituting into (2.7) yields

$$
\begin{align*}
\left|E_{k ; N, m}\right| & \leq N \cdot\left|E_{k, 1 ; N, m}\right| \\
& \leq \frac{1}{k!} \frac{m^{k}}{N^{k-1}} e^{-m / N}+O\left(\frac{m^{k+1}}{N^{k}}\right) \tag{2.11}
\end{align*}
$$

If we take $m=N^{\frac{k-1}{k}}$ then the main term is of size $\frac{1}{k!}$ (as $e^{-m / N}=e^{-1 / N^{1 / k}}=1+$ $O\left(N^{-1 / k}\right)$) and the error term is $O\left(N^{-1 / k}\right)$. Thus we have shown for k fixed and $m=$ $N^{\frac{k-1}{k}}$ that

$$
\begin{equation*}
\left|E_{k ; N, m}\right| \leq \frac{1}{k!}+O\left(N^{-1 / k}\right) \tag{2.12}
\end{equation*}
$$

completing the proof of the upper bound.
Let $E_{n_{1}, i_{1}, n_{2}, i_{2} ; N, m}$ be the event of at least n_{1} balls in box i_{1} and at least n_{2} balls in box i_{2} (with m balls in all, N boxes). By inclusion-exclusion we have

$$
\begin{equation*}
\left|E_{k ; N, m}\right|>\sum_{i=1}^{N}\left|E_{k, i ; N, m}\right|-\sum_{i_{1}=1}^{N-1} \sum_{i_{2}=i_{1}+1}^{N}\left|E_{k, i_{1}, k, i_{2} ; N, m}\right| \tag{2.13}
\end{equation*}
$$

The left hand side, $\left|E_{k, i ; N, m}\right|$, counts how many times at least one box has at least k balls. If this happens, then there must be at least one index i such that it is counted in an $E_{k, i ; N, m}$. If there are two such indices, it is counted twice, but then we subtract it once from an $E_{k, i_{1}, k, i_{2} ; N, m}$ term. If exactly $\ell \geq 2$ boxes contain at least k balls, then we have counted this ℓ times from the $E_{k, i ; N, m}$ terms and subtracted it $\binom{\ell}{2}$ times from the $E_{k, i_{1}, k, i_{2} ; N, m}$ terms. Thus (2.13) is a lower bound for $\left|E_{k ; N, m}\right|$.
Proof of the Lower Bound in (1.5). Thus by the above arguments and symmetry, we need only compute a good estimate for $\left|E_{k, 1, k, 2 ; N, m}\right|$, as

$$
\begin{equation*}
\left|E_{k ; N, m}\right| \geq N \cdot\left|E_{k, 1 ; N, m}\right|-\frac{N(N-1)}{2} \cdot\left|E_{k, 1, k, 2 ; N, m}\right| \tag{2.14}
\end{equation*}
$$

Let $F_{n_{1}, 1, n_{2}, 2 ; N, m}$ be the event of exactly n_{1} balls in the first box and exactly n_{2} balls in the second box (with m balls and N boxes). Then for $m>\max \left(n_{1}, n_{2}\right)$,
$\left|F_{n_{1}, 1, n_{2}, 2 ; N, m}\right|=\binom{m}{n_{1}} \frac{1}{N^{n_{1}}}\binom{m-n_{1}}{n_{2}} \frac{1}{N^{n_{2}}}\binom{m-n_{1}-n_{2}}{m-n_{1}-n_{2}}\left(1-\frac{1}{N}\right)^{m-n_{1}-n_{2}}+O\left(N^{-1}\right)$.
The main term is when $n_{1}=n_{2}=k$, which gives

$$
\begin{equation*}
\left|F_{k, 1, k, 2 ; N, m}\right| \sim \frac{1}{k!k!} \frac{m^{2 k}}{N^{2 k}} e^{-m / N} . \tag{2.15}
\end{equation*}
$$

We bound the contribution from terms with each $n_{i} \geq k$ and $n_{1}+n_{2} \geq 2 k+1$. If $n_{1}+n_{2}=\ell$, there are clearly only $\ell-1$ pairs of positive integers $\left(n_{1}, n_{2}\right)$ that sum to ℓ (of course, there are fewer pairs for us, as each must be at least k). As $\ell-1 \leq n_{1} n_{2}$, we have

$$
\begin{equation*}
\sum_{\substack{n_{1}, n_{2} \geq k \\ n_{1}+n_{2} \geq 2 k+1}}\left|F_{n_{1}, 1, n_{2}, 2 ; N, m}\right|=O\left(\sum_{\ell=2 k+1}^{m} \frac{1}{\left\lfloor\frac{\ell-2}{2}\right\rfloor!}\left(\frac{m}{N}\right)^{\ell}\right)=O\left(\frac{m^{2 k+1}}{N^{2 k+1}}\right) . \tag{2.17}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left|E_{k, 1, k, 2 ; N, m}\right|=\frac{1}{k!k!} \frac{m^{2 k}}{N^{2 k}} e^{-m / N}+O\left(\frac{m^{2 k+1}}{N^{2 k+1}}\right) \tag{2.18}
\end{equation*}
$$

Substituting into (2.14) and using (2.10) for the size of $\left|E_{k, 1 ; N, m}\right|$ yields

$$
\begin{align*}
\left|E_{k ; N, m}\right|>N & {\left[\frac{1}{k!} \frac{m^{k}}{N^{k}} e^{-m / N}+O\left(\frac{m^{k+1}}{N^{k+1}}\right)\right] } \\
& -\frac{N^{2}}{2} \cdot\left[\frac{1}{k!k!} \frac{m^{2 k}}{N^{2 k}} e^{-m / N}+O\left(\frac{m^{2 k+1}}{N^{2 k+1}}\right)\right] \tag{2.19}
\end{align*}
$$

Again taking $m=N^{\frac{k-1}{k}}$ (so $\frac{m^{k}}{N^{k-1}}=1$), we find that

$$
\begin{equation*}
\left|E_{k ; N, m}\right|>\frac{2 \cdot k!-1}{2 \cdot k!^{2}}+O\left(N^{-1 / k}\right) \tag{2.20}
\end{equation*}
$$

completing the proof of the lower bound.

Remark 2.1. Using the lower bound, we can bootstrap and ensure a high probability of having at least one box with at least k balls. The probability of not having at least k balls in one of the boxes is at most

$$
\begin{equation*}
1-\frac{2 \cdot k!-1}{2 \cdot k!^{2}}+O\left(N^{-1 / k}\right) \tag{2.21}
\end{equation*}
$$

remembering of course that $m=N^{\frac{k-1}{k}}$. Consider now a independent sets of $m=N^{\frac{k-1}{k}}$ balls. The probability that none of these a sets has at least one box with k balls is

$$
\begin{equation*}
\left(1-\frac{2 \cdot k!-1}{2 \cdot k!^{2}}+O\left(N^{-1 / k}\right)\right)^{a} \tag{2.22}
\end{equation*}
$$

By choosing a sufficiently large, we can make this probability as close to zero as we like, or equivalently make the probability that if we take at least $a N^{\frac{k-1}{k}}$ balls then at least one box has at least k balls. By taking a to be a small power of N, we can make the probability 1 plus a smaller term.

Remark 2.2. Note in Remark 2.1 that we considered a independent sets of m balls. In finding our bounds of having at least k balls in a box we do not allow (say) $k-k^{\prime}$ balls in box 1 from the first set and k^{\prime} balls in box 1 from the second set; thus the a we take is almost surely much larger than needed.

3. Letting k Depend on N

We discuss what happens if we try to use these arguments with k growing with N. Specifically, if we have $m=N^{2-\epsilon}$, then is there a positive probability (as $N \rightarrow \infty$) of having at least one box with at least $k=N$ balls in it? We use Stirling's formula, which gives us the approximation

$$
\begin{equation*}
n!\sim n^{n} e^{-n} \sqrt{2 \pi n} \tag{3.23}
\end{equation*}
$$

Let us first consider the probability of having at least N balls in the first box. The probability of exactly n balls in the first box is

$$
\begin{align*}
\left|P_{n, 1 ; N, m}\right| & =\binom{m}{n} \frac{1}{N^{n}}\binom{m-n}{m-n}\left(1-\frac{1}{N}\right)^{m-n} \\
& \leq \frac{1}{n!} \frac{m^{n}}{N^{n}} e^{-(m-n) / N} \tag{3.24}
\end{align*}
$$

We first bound the contribution when $n \in\left\{N^{2-2 \epsilon}, \ldots, m\right\}$, where $m=N^{2-\epsilon}$. These contribute

$$
\begin{align*}
\sum_{n=N^{2-2 \epsilon}}^{N^{2-\epsilon}}\left|P_{n, 1 ; N, N^{2-\epsilon}}\right| & \leq \sum_{n=N^{2-2 \epsilon}}^{N^{2-\epsilon}} \frac{1}{n^{n} e^{-n} \sqrt{2 \pi n}} \frac{m^{n}}{N^{n}} e^{-(m-n) / N} \\
& \ll \sum_{n=N^{2-2 \epsilon}}^{N^{2-\epsilon}}(2 \pi n)^{-\frac{1}{2}}\left(\frac{e m}{n N}\right)^{n} e^{-(m-n) / N} \\
& \ll \sum_{n=N^{2-2 \epsilon}}^{N^{2-\epsilon}}(2 \pi n)^{-\frac{1}{2}}\left(\frac{e N^{2-\epsilon}}{n N}\right)^{n} \\
& \ll \sum_{n=N^{2-2 \epsilon}}^{N^{2-\epsilon}} n^{-\frac{1}{2}}\left(\frac{e}{N^{1-\epsilon}}\right)^{N^{2-2 \epsilon}} \\
& \ll \sum_{n=N^{2-2 \epsilon}}^{N^{2-\epsilon}} n^{-\frac{1}{2}} e^{N^{2-2 \epsilon} \log \left(e / N^{1-\epsilon}\right)} \\
& \ll N^{1-\frac{\epsilon}{2}} e^{-(1-\epsilon) N^{2-2 \epsilon} \log N+N^{2-2 \epsilon}} \\
& \ll e^{-(1-\epsilon) N^{2-2 \epsilon} \log N+N^{2-2 \epsilon}+\left(1-\frac{\epsilon}{2}\right) \log N} \tag{3.25}
\end{align*}
$$

We consider the contribution from terms with $n \in\left\{N, \ldots, N^{2-2 \epsilon}\right\}$; note $n \leq m=$ $N^{2-\epsilon}$. For such n we have (δ a positive constant below) that

$$
\begin{align*}
\sum_{n=N}^{N^{2-2 \epsilon}}\left|P_{n, 1 ; N, N^{2-\epsilon}}\right| & \leq \sum_{n=N}^{N^{2-2 \epsilon}} \frac{1}{n^{n}} e^{-n} \sqrt{2 \pi n}
\end{align*} \frac{m^{n}}{N^{n}} e^{-(m-n) / N}
$$

Thus from (3.25) and (3.26) we have

$$
\begin{align*}
\sum_{n=N}^{N^{2-\epsilon}}\left|P_{n, 1 ; N, N^{2-\epsilon}}\right| \ll & e^{-\epsilon N \log N+N-\delta N^{1-\epsilon}+(1-\epsilon) \log N} \\
& \quad+e^{-(1-\epsilon) N^{2-2 \epsilon} \log N+N^{2-2 \epsilon}+\left(1-\frac{\epsilon}{2}\right) \log N} \tag{3.27}
\end{align*}
$$

For $m=N^{2-\epsilon}$, as

$$
\begin{equation*}
E_{N ; N, N^{2-\epsilon}} \subset \bigcup_{i=1}^{N} \bigcup_{n=N}^{N^{2-\epsilon}} P_{n, i ; N, N^{2-\epsilon}} \tag{3.28}
\end{equation*}
$$

we finally obtain that

$$
\begin{align*}
&\left|E_{N ; N, N^{2-\epsilon}}\right| \lll N \cdot e^{-\epsilon N \log N+N-\delta N^{1-\epsilon}+(1-\epsilon) \log N} \\
& \quad+N \cdot e^{-(1-\epsilon) N^{2-2 \epsilon} \log N+N^{2-2 \epsilon}+\left(1-\frac{\epsilon}{2}\right) \log N} \\
& \lll \quad e^{-\epsilon N \log N+N-\delta N^{1-\epsilon}+(2-\epsilon) \log N} \\
&+e^{-(1-\epsilon) N^{2-2 \epsilon} \log N+N^{2-2 \epsilon}+\left(2-\frac{\epsilon}{2}\right) \log N}, \tag{3.29}
\end{align*}
$$

which yields
Theorem 3.1. There is negligible probability of having at least N balls in one of N boxes when there are $N^{2-\epsilon}$ balls.

Remark 3.2. As $\delta \in(0,1]$, even if we were to take

$$
\begin{equation*}
\epsilon=\frac{\theta}{\log N} \tag{3.30}
\end{equation*}
$$

in the above arguments (for some $\theta>1$), we would still have $\left|E_{N ; N, N^{2-\epsilon}}\right|=o(1)$ for such m.

4. Moment Arguments

Let's analyze the mean and standard deviations when m independent balls are tossed into N boxes (each box equally likely). Let $w_{i, 1}$ be the binary indicator variable for ball i and box 1 . Thus $w_{i, 1}$ is 1 with probability $p=\frac{1}{N}$ and 0 with probability $q=1-\frac{1}{N}$. Note the mean of $w_{i, 1}$ is $\frac{1}{N}$ and the standard deviation is $\sqrt{p q}$, which is approximately $N^{-\frac{1}{2}}$.

If we let $w_{1}=\sum_{i=1}^{m} w_{i, 1}$, then the mean is simply $\frac{m}{N}$ and the standard deviation is $\sqrt{m p q}$.

If we fix k, we've seen we need to take $m \sim N^{\frac{k-1}{k}}$. Such a choice leads to the expected number of balls in the first box of $\frac{m}{N}=N^{-1 / k}$, with a standard deviation of $\sqrt{m p q} \sim$ $N^{-1 / 2 k}$. Thus we need to be on the order of $k N^{1 / 2 k}$ standard deviations from the mean; of course, we have N boxes and need this just for one box. We can look at this in terms of m - we need on the order of $k m^{1 / 2(k-1)}$ standard deviations.

If we let $k=N$ and $m=N^{2-\epsilon}$, then the expected number of balls in the first box is $\frac{m}{N}=N^{1-\epsilon}$, and the standard deviation is $\sqrt{m p q} \sim N^{\frac{1}{2}-\frac{\epsilon}{2}}$. Thus we would need on the order of $N^{\frac{1}{2}-\frac{\epsilon}{2}}$ standard deviations from the mean (we need to get up to N, each standard deviation adds about $N^{\frac{1}{2}-\frac{\epsilon}{2}}$ so we need $N^{\frac{1}{2}+\frac{\epsilon}{2}}$ such steps); of course, we have N boxes and this is just for one box. We can look at this in terms of m - we need on the order of $m^{\frac{1}{4}+\epsilon^{\prime}}$ standard deviations.

The above arguments are meant to try and provide some insight as to what breaks down when we consider $k=N$ and $m=N^{2-\epsilon}$. These are just some quick thoughts.

Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912
E-mail address: s jmiller@math.brown.edu

