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1. Introduction

We return yet again to the subject of the distribution of the di�erences

E (x; a, k)^ h (x; a, k)^
x
� (k)

for relatively prime values of a, k, where

h (x; a, k)^ \
p~x

p/a,modk

log p

as usual. Having mainly directed our attention in the earlier articles of this series (denoted
in what follows by the Roman numeral indicating their place in our researches) to questions
associated with either

\
0"a~k
(a,k):1

E2 (x ; a, k)

or the Barban-Davenport-Halberstam moments

\
k~Q

\
0"a~k
(a,k):1

E2 (x; a, k) ,

we now pass on to the study of the third moment

(1) S (Q)^ \
k~Q
� (k) \

0"a~k
(a,k):1

E3 (x ; a, k)

and prove that, for Q^o (x � logx) and any positive constant A,

(2) S (Q)^ o �Q32 x32 log32 x�^ O � x3
logAx�



in the spirit of the announcement made at the end of the immediately preceding VII. We
thus substantiate a further result that is consistent with the expectation that usually

E (x; a, k)^ O �x12 log12x

�12 (k) � ((a, k)^1)

for values of k almost up to x � logx, providing in addition some considerable con�rmation
of our belief that E (x; a, k) is symmetrically distributed about its e�ectively zero mean.
We also obtain the counterpart of (2) that is valid for the complementary range

x � logx ~ Q ~ x ,

albeit this is of less signi�cance in the theory we are illustrating.

Although our method has a genesis somewhat similar to that of our proofs of the
Barban-Montgomery theorem in I and II, the main body of our investigation introduces
features and complications that were absent from previous contributions to this series. In
particular, the most important aspect of the analysis stems from a special variant of
Vinogradov's theorem concerning the representation of zero by ternary linear combinations
of primes, the application of which requires us to pursue a narrow track very precisely in
order to avoid inexactitudes that would vitiate our objective. The essential points of
importance being necessarily somewhat obscured by the complexity of the workings, we
can perhaps admit that there were occasions in the investigation when like Dante (Inferno)
we found ourselves

"". . . . . in a gloomy wood, astray
Gone from the path direct . . . . .''.

In fact, having dissected the right-hand side of (1) into sums involving various combinations
of h (x ; a, k) and x �� (k), we identify the main di�iculty in the need to evaluate these items
so accurately that the explicit terms in their determinations annihilate themselves to leave
only the right-hand side of (2); here it is necessary to take into account not only main
terms of approximate sizes x3 logax but also secondary exact terms of approximate size
Qx2 logBx. But it is best to defer discussion of these and other obstacles athwart our path
until we reach and confront them.

The choice of the multiplier a�ecting the inner sum in (1) is not particularly critical
and we have therefore taken it to be � (k) in the interests of simplicity. Equally well, we

could have used either �12 (k) as in VII or k, although at the expense of a little further com-
plication in the proof. Yet, increasingly as the order of the moments of this type becomes
larger, it is desirable to use weights that are su�iciently large for the contribution of the
larger values of k to predominate.

The assumption of the extended Riemann hypothesis for Dirichlet's L-functions
enables one to obtain a greatly improved form of our result in which a sharper version
of (2) is valid for smaller values of Q, thus shedding further light on the distribution of
E (x ; a, k) for smaller values of k. But the investigation of this development must await a
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later paper in this series, since otherwise we would exceed the limits that have been set for
the present occasion.

2. Notation

Owing to the length and complexity of the memoir it is not practicable to lay down
a completely consistent notation. However, the meaning of all symbols should be clear
from their context in the light of the following guide.

The letters p, p
1
, p
2
, p
3
,� denote (positive) prime numbers; m, n, l, l

1
, l
2
, l
3
, l F, l F

1
, l F
2
, l F
3
,

are positive integers; d, d are positive integers that play various interconnected ro% les; d F,
", "F are also positive integers that arise from d, d in one of their incarnations.

The letters C
i
are positive constants that are explicitly de�ned; the letters B

i
are also

speci�c constants whose precise values are immaterial to the investigation; AF is a positive
constant whose value is not necessarily the same at each occurrence; A,A

1
, . . . , A

12
are

positive absolute constants whose connection with each other will be plain from the text
and, in particular, from * 5; e is an arbitrarily small positive constant that is not necessarily
the same on all occasions.

The constants implied by the O-notation depend at most on AF, A, A
i
, and e in a

manner that is clear from the text; ultimately, however, they depend only on A. The
function !(m) is of an arithmetical nature save when it is designated to be the usual
(Eulerian) gamma function. As usual, (a, b) and Ga, bH respectively denote the positive
highest common factor and least common multiple of a, b when these are de�ned.

3. Initial decomposition of the sum

Expanding the notation in (1) by writing

S (x,Q)^ \
k~Q
� (k) \

0"a~k
(a,k):1

E3 (x; a, k) ,

we �x the positive absolute constant A that is to appear in (2) and �rst consider the case
where Q ~ x log+A1x and A

1
is a suitable absolute constant such that

(3) A
1
~A ^2 .

Then, since in this instance

E (x; a, k)~
x
� (k)

^ log x \
n~x

n/a,modk

1^O �x logx
� (k) � ,

we have immediately that

(4) S (x,Q)^O �x logx \
k~Q

\
0"a~k
(a,k):1

E2 (x; a, k)�^O � x
logAx�
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by Gallagher's form of Theorem A in I. In the contrary case that remains to be considered,
we let

(5) x log+A1x ^Q
1

~ Q ~ x

and then write
S (x ; Q

1
, Q)^S (x,Q)^S (x,Q

1
)

so that

(6) S (x,Q)^S (x ; Q
1
, Q)^ O � x

logAx�
in virtue of (4) above.

Next, decomposing S (x ; Q
1
, Q) with the aid of the simple identity

(u^v)3^ u3^ 3 (u^v)2v^3 (u^v) v2^ v3 ,

we obtain

(7) S (x; Q
1
, Q)^ \

Q1"k~Q
� (k) \

0"a~k
(a,k):1

h3 (x; a, k)^3x \
Q1"k~Q

\
0"a~k
(a,k):1

E2 (x; a, k)

^3x2 \
Q1"k~Q

1
� (k)

\
0"a~k
(a,k):1

E (x ; a, k)^x3 \
Q1"k~Q

1
� (k)

^ S
1
(x; Q

1
, Q)^3x S

2
(x ; Q

1
, Q)^3x2S

3
(x; Q

1
, Q)^x3 \

Q1"k~Q

1
� (k)

, say ,

the last three terms in which will not delay us for long. Indeed the prime number theorem
and Lemma 1 in I immediately give

(8)S
3
(x; Q

1
, Q)^ \

Q1"k~Q

1
� (k)

Jh (x)^ O (logk)^xK^O (x logx e+AD [logx)

^O � x
logAx�

and

(9) \
Q1"k~Q

1
� (k)

^
f (2) f (3)
f (6)

log
Q

Q
1

^ O � logQ
1

Q
1
�

^
f (2) f (3)
f (6)

log
Q

Q
1

^ O � 1
logAx � ,

respectively, whereas the sum S
2
(x; Q

1
, Q) is estimated through an improvement in the

form of the Barban-Montgomery theorem that was derived in I.

This re�nement stems from the replacement of the �rst part of Lemma 1 in I by the
more accurate
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Lemma 1. For m~1, we have

\
l"M �1^

l
m �2 1
� (l)^

f (2) f (3)
f (6)

log m^ C
1

^
log m
m

^
C
2
m

^ O � e+AD [log 2m

m32 � ,
where

(10) C
2
^
f F(0)
f (0)

^c^ \
p

log p
p (p^1)

.

All that is needed being a careful reappraisal of the proof of the previous result in
I, we �rst observe that the integrand in the contour integral there is equal to

� 1
(s ^1)2

^
c

s ^1
^ � � �� f (s ^1) h (s ^1) ms

s (s ^2)

in the neighbourhood of s^^1, whence with the aid of logarithmic di�erentiation we
obtain

R
2
^^
f (0) h (0)
m �log m^

f F(0)
f (0)

^
h F(0)
h (0)

^c�
and con�rm the above stated value of C

2
because f (0)^^

1
2
and

h F(0)
h (0)

^ \
p

log p
p (p^1)

by a simple calculation. Secondly, a typical factor in the in�nite product for h (s) equals

1^ �1^ 1
p�+1 1

p s;2
^ �1^ 1

p �+1 1
p2s;2

^1^
1

p2s;2
^

1
p s;2 �1^ 1

p �+1 �1^ 1
ps;1�

^ �1^ 1
p2s;2� �1^

1
ps;2 �1^ 1

p�+1 �1^
1

p s;1�+1�
with the implication that

h (s)^
h
1
(s)

f (2 s ^2)
,

where h
1
(s) is regular and bounded for p~^1^g. Hence, utilizing features of f (s) such

as its zero-free region and its order of magnitude, we see in the customary manner that
the residual contour integral is
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O (m+32 e+AD	log2M)

and complete the proof of the revised lemma.

Observe now that our sum S
2
(x; Q

1
, Q) is the sum G (x ; Q

1
, Q

2
) that is estimated in

I after its appearance in equation (2) therein. Hence, using the revised lemma in the place
of the original, we retrace the previous proof and obtain

(11) S
2
(x;Q

1
,Q)^Qx logQ^(C

2
^1)Qx ^ O (Q32x12 e+AD	log2x#Q )

^ O � x2
logAx � ,

where it is to be borne in mind that the value of Q
1
is actually now smaller than in I.

We note that the use of the multiplier � (k) in (1) instead of k enabled the sum
S
2
(x ; Q

1
Q) to be quickly treated by appealing to I; had the factor k been used more work

would have been needed at this stage although some of the later analysis would have been
simpli�ed.

In summation of what has so far been learnt, we conclude from (6), (7), (8), (9) and
(11) that

(12) S (x,Q)^S
1
(x; Q

1
, Q)^

f (2) f (3)
f (6)

x3 log
Q

Q
1
^3Q x2 log Q ^3(C

2
^1)Qx2

^ O (Q32x32 e+AD	log2x#Q )^ O � x3
logAx� ,

the stage having been now cleared for the treatment of the most important constituent
S
1
(x ; Q

1
,Q) of S (x,Q).

4. Dissection of S<
1
(x;Q

1
Q) and the estimations of two of its constituents

The factor � (k) a�ecting the inner sum in S
1
(x ;Q

1
,Q) creates di�iculties in the

analysis that are abated in the treatment of the associated sum

(13) S<
1
(x ; Q

1
, Q)^ \

Q1"k~Q

� (k)
k

\
0"a~k
(a,k):1

h3 (x ; a, k) ,

which therefore is the object of our study until we revert at the end to the original sum
by partial summation.

The inner sum is

\
0"a~k
(a,k):1

� \
p~x

p/a,modk

log p�3^ \
p1/p2/p3,modk

p1,p2,p3~x� (p1p2p3, k):1

log p
1
log p

2
log p

3
,
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in the second term of which the �rst condition of summation implies the third when not
all of p

1
, p

2
, p

3
are equal. Hence we obtain the equivalent determination

�6 \
p1/p2/p3,modk
p2"p3"p1~x

^3 \
p1/p3,modk
p2:p3"p1~x

^3 \
p1/p2,modk
p2"p3:p1~x

^ \
p1:p2:p3~x
(p1p2p3,k):1

� log p
1
log p

2
log p

3

^ 6 \
p2"p3"p1~x
p1/p2/p3,modk

log p
1
log p

2
log p

3
^3 \

p"pD~x
p/pD,modk

log2 p log p F

(14) ^ 3 \
p"pD~x
p/pD,modk

log p log2p F^ \
p~x
p�k

log3 p ,

the individual contributions from which to S<
1
(x;Q

1
,Q) are denoted according to their

positions by 6 S<
4
(x; Q

1
,Q), 3 S<

5
(x; Q

1
,Q), 3 S<

6
(x; Q

1
,Q), and S<

7
(x; Q

1
,Q) so that

altogether

(15) S<
1
(x;Q

1
,Q)

^ 6 S<
4
(x; Q

1
,Q)^3 S<

5
(x;Q

1
,Q)^3 S<

6
(x;Q

1
,Q)^ S<

7
(x; Q

1
,Q) .

Once more the treatment of sums proceeds according to ascending order of di�iculty.
The inner sum in S<

7
(x; Q

1
,Q) is

(16) \
p~x

log3p ^ O �log2x \
p �k

log p�^ \
p~x

log3p ^ O (log3x)

^
x
O
3#2

log2 t dh (t)^ O (log3x)

^x log2x^2x log x ^2x ^ O � x
logAx�

by the prime number theorem. Therefore, invoking the well-known asymptotic formula

\
k~u

� (k)
k

^
u
f (2)

^ O(log 2u) ,

we infer that

(17) S<
7
(x ; Q

1
,Q)^ Jx log2x ^ O (x log x)K \

Q1"k~Q

� (k)
k

^
1
f (2)

JQ^Q
1

^ O (logx)KJx log2x ^ O (x log x)K

^
1
f (2)

Q x log2x ^ O (Qx log x)^ O � x
logAx�

in view of (3) and (5). As we shall see, however, this implicit contribution to S (x,Q) will
only be of importance when Q lies in the exceptional range for which Q~x � log x.
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To prepare the remaining sums S<
i
(x; Q

1
,Q) for their examination, we note their

de�nition is only contingent on the condition Q
1

~ Q ~ x so that we may concentrate on
the sums

(18) J
i
(x,Q)^ S<

i
(x; Q,x) (i^ 4, 5, 6)

for

(19) Q~ x log+A1x

because

(20) S<
i
(x;Q

1
,Q)^ J

i
(x,Q

1
)^J

i
(x,Q) .

The sums S<
5
(x;Q

1
,Q) and S<

6
(x; Q

1
,Q) are treated separately via (14) and then are

amalgamated so that their sum can be assessed. First, considering the conditions of sum-
mation for J

6
(x,Q) that are inherent in (13), (14), (18), and (19) and letting l denote

generally a positive integer, we have

(21) J
6
(x,Q)^ \

pD+p:lk
pD~x
Q"k~x

log2p F log p
� (k)

k
,

wherein the condition k~Q implies that l~x �Q and p~ p F^lQ. Therefore

(22) J
6
(x,Q)^ \

pD+p:lk
pD~x� l"x#Q
p"pD+lQ

log2p F log p \
d �k

k (d )
d

^ \
l"x#Q

\
d~x

k (d )
d

\
pD~x

log2p F \
p"pD+lQ
p/pD,modld

log p ,

in which, the innermost sum being

p F^ lQ
� (ld )

^ O � x
log2A1 x�

when p F�ld but zero otherwise, we see that the double iterated sum over primes is

(23)
1
� (ld )

\
pD~x
pD�ld

(p F^ lQ) log2p F^ O � x2
log2A1+1x�

^
1
� (ld ) �(x^ lQ) \

pD~x
log2p F^ \

pD~x
(x^p F) log2p F�^ O � x2

log2A1+1x � .
But, much as in (16),

\
pD~u

log2p F^ u log u^u ^ O � u
log2A1+1u�
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and

(24) \
pD~u

(u^p F) log2p F^
u
O
0

\
pD~ t

log2p Fd t

^
1
2

u2 log u^
3
4

u2^ O � (u ^1)2
log2A1+1 (u ^2)� ,

for any u~0, whence (23) is equal to

(25)
1
� (ld ) �(x^ lQ) (x log x^x)^ � 12 x2 log x^

3
4

x2��^ O � x2
log2A1+1x� .

Also, since J
5
(x,Q) arises when p and p F are interchanged in the conditions of sum-

mation on the right side of (21), the substitution of the demands on the sizes of p and p F
in (22) by p F^ lQ~p ~ x and p F~x^ lQ yields a formula for J

5
(x,Q), in which now

the right side has an innermost sum

\
pD;lQ"p~x
p/pD,modld

log p^
x^ lQ^p F
� (ld )

^ O � x
log2A1x�

for any p F not dividing ld. The double iterated sum over p, p F being therefore now

1
� (ld )

\
pD"x+lQ
pD�ld

(x^ lQ^p F) log2p F^ O � x2
log2A+1x�

^
1
� (ld ) �12 (x^ lQ)2 log (x^ lQ)^

3
4
(x^ lQ)2�^ O � x2

log2A1+1
x�

by (24), we combine this with (25) and deduce that

J
5
(x,Q)^ J

6
(x,Q)^ \

l"x#Q
�(x^ lQ) (x log x^x)^ �12 x2 logx^

3
4

x2�
^

1
2
(x^ lQ)2 log (x^ lQ)^

3
4
(x^ lQ)2� \

d~x

k (d )
d� (ld )

^ O � x2
log2A1+1x

\
l~ logA1x

\
d~x

1
d �

^ \
l"x#Q

�(x^ lQ) (x log x^x)^ �12 x2 logx^
3
4

x2�^
1
2
(x^ lQ)2 log (x^ lQ)

^
3
4
(x^ lQ)2� '

\
d:1

k (d )
d� (ld )

^ O �x2 logx \
l~x

1
� (l ) \

d!x

1
d� (d )�^ O � x2

logA1+2x�

H o o l e y, On the Barban-Davenport-Halberstam theorem: VIII 9



^ \
l"x#Q

�(x^ lQ)(x logx^x)^ �12 x2 log x^
3
4

x2�^
1
2
(x^ lQ)2 log (x^ lQ)

^
3
4
(x^ lQ)2� '

\
d:1

k (d )
d� (ld )

^ O � x2
logAx�

in the light of (3) and (5). In this, by Euler's theorem, the series over d is

]
p�l �1^

1
p (p^1)� ]

pa ��l �
1
� (pa)

^
1

p2� (pa)�
^

1
� (l) ]

p
�1^ 1

p (p^1)� ]
p �l
�1^ 1

p (p^1)�+1 �1^ 1
p2�^ C

3
t
1
(l )

l ,

where

(26) C
3
^ ]

p
�1^ 1

p (p^1)�
and

(27) t
1
(l)^ ]

p �l �1^
1

p^1^1�p�^ ]
p � l
�1^

1
h
1
(p)�^ \

d �l

k2 (d )
h
1
(d )

, say .

Hence

(28) J
5
(x, Q)^ J

6
(x,Q)^C

3
\
l"x#Q

�(x^ lQ) (x logx^x)

^ �12 x2 logx^
3
4

x2�^
1
2
(x^ lQ)2 log (x^ lQ)^

3
4
(x^ lQ)2� t1(l)l ^ O � x2

logAx� .
To complete the estimation of J

5
(x, Q)^ J

6
(x,Q) we need

Lemma 2. Let

(29) C
4
^ ]

p
�1^

1
h
1
(p) p�

and let B
1
, B

2
, . . . denote speci�c constants whose actual values are not of importance here.

Then, for m~1,

(i) \
l"M

t
1
(l)
l ^C

4
log m^ B

1
^ O � log (m^2)

m � ;
(ii) \

l"M
(m^ l) t1(l)l ^C

4
m log m^ B

2
m^ O (log2 (m^2)) ;

(iii) \
l"M

(m^ l)2 t1(l)l ^C
4
m2 log m^ B

3
m2^ O (m log2 (m^2)) ;
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(iv) \
l"M �

1
2
(m^ l)2 log (m^ l)^ 3

4
(m^ l)2� t1(l)l

^
1
2

C
4
m2 log2m^ B

4
m2 log m^ B

5
m2^ O (m log3 (m^2)) ,

where

B
4
^

1
2

B
3
^

3
4

C
4
.

Parts (ii) and (iii) are obtained from single or double integrations of part (i), whose
proof may be omitted because it is similar to that of such familiar formulae as the one
occurring in part (i) of I, Lemma 1 (from which our (9) was derived); at this point it is
helpful for our calculations to note that all these formulae are also trivially valid for
0~m~1 with an obvious interpretation for values of terms at m^0.

Going over to part (iv), we see that its left-hand side equals

M
O
0
log (m^ t) \

l"t
(t^ l) t1(l)l d t

because the latter is

\
l"M

t
1
(l)
l
M
O
l
(t^ l) log (m^ t) dt

^ \
l"M

t
1
(l)
l
M+l
O
0

(m^ l^u) log u d u

in which the integral is the double integral
1
2

u2 log u^
3
4

u2 at u^m^ l. Therefore, by
part (ii), the sum to be estimated is

M
O
0
log (m^ t) (C

4
t log t ^ B

2
t) dt ^ O (m log3 (m^2))

^C
4
M
O
0
log (m^ t) t log t d t ^ B

2
M
O
0
log (m^ t) t dt ^ O(m log3 (m^2)) ,

the �rst integral in the last line above being, via the substitution t^mt F,

m2
1
O
0
Jlog m^ log(1^ t F)K t F(log m^ log t F) dt F

^ m2 log2m
1
O
0

t Fdt F^m2 log m �1O
0

t F log t Fdt F^
1
O
0

t F log (1^ t F) dt F�^ B
6
m2

^
1
2
m2 log2m^m2 log m

1
O
0
log t Fd t F^ B

6
m2^

1
2
m2 log2m^m2 log m^ B

6
m2

and the second one being
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m2 log m
1
O
0

t Fd t F^m2
1
O
0

t F log (1^ t F) dt F^
1
2
m2 log m^ B

7
m2 .

Thus, altogether, we get the right side of (iv) with the value B
4
^

1
2

B
2
^C

4
. Since the

integration of (ii) to give (iii) implies that B
3
^B

2
^

1
2

C
4
, the proof of the lemma is

complete.

By (20) and (28) followed by Lemma 2,

1
C
3
JS<

5
(x ; Q

1
,Q)^ S<

6
(x ; Q

1
,Q)K^ (x logx^x) �Q

1
\

l"x#Q1
� x

Q
1
^ l� t1 (l)l

^Q \
l"x#Q �

x
Q
^ l� t1(l)l �^ � 12 x2 logx^

3
4

x2� \
x#Q"l~x#Q1

t
1
(l)
l

^
1
2 �Q2

1
logQ

1
\

l"x#Q1 �
x

Q
1
^ l�2 t1(l)l ^Q2 logQ \

l"x#Q �
x
Q
^ l�2 t1(l)l �

^ Q2
1

\
l"x#Q1

� 12 � x
Q
1
^ l�2 log � x

Q
1
^ l�^3

4 � x
Q
1
^ l�2� t1(l)l

^Q2 \
l"x#Q

� 12 � x
Q

^ l�2 log � x
Q

^ l�^ 3
4 � x

Q
^ l�2� t1(l)l ^ O � x2

logAx�
^C

4
(x log x^x) x log

Q
Q
1
^C

4 �12 x2 logx^
3
4

x2� log Q
Q
1

^
1
2

C
4

x2 logQ
1
log

x
Q
1

^
1
2

C
4

x2 logQ log
x
Q

^
1
2

B
3

x2 log
Q

Q
1

^
1
2

C
4

x2 �log2 x
Q
1
^log2

x
Q�

^ B
4

x2 log
Q

Q
1

^ O �x Q log x log2
x
Q�^ O � x2

logAx�
^x2 log x �C

4
^

1
2

C
4
^

1
2

C
4

^ C
4� log Q

Q
1

^ x2 �^C
4

^
3
4

C
4
^

1
2

B
3

^ B
4� log Q

Q
1

^ O �x Q logx log2
x
Q�^ O � x2

logAx �
^C

4
x2 logx log

Q
Q
1
^C

4
x2 log

Q
Q
1

^ O �x Q logx log2
x
Q�^ O � x2

logAx� ,
where (3) and (5) must be borne in mind. Therefore, as

C
3

C
4
^]

p
�1^ 1

p (p^1)� �1^
1

p2^p ^1�^1

by (26) and (29), we infer that
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S<
5
(x ;Q

1
,Q)^ S<

6
(x;Q

1
,Q)^x2 logx log

Q
Q
1
^x2 log

Q
Q
1

^ O �x Q logx log2
x
Q�

(30) ^ O � x2
logAx�

and conclude the treatment of the sums of intermediate di�iculty.

5. Estimation of S<
4
(x ;Q

1
,Q) -- the preliminary stages and the application
of the circle method

Having gained the foothills, we commence the main ascent by considering the sum
S<
4
(x ; Q

1
,Q) that is connected with (13) and (14). We con�rm that (19) is still to hold and

�rst �nd from (18), (13), and (14) that

(31) J
4
(x,Q)^ \

d~x

k (d )
d

\
Q"k~x
k/0,modd

\
p2"p3"p1~x
p1/p2/p3,modk

log p
1
log p

2
log p

3

^ \
d~x

k (d )
d

J �(x,Q; d ) , say .

Next the congruential condition attached to the inner sum in J�(x,Q; d ) is there equivalent
to the existence of positive integers l

1
, l
2
, and l

3
such that

(32) p
3
^p

2
^ l

1
k , p

1
^p

3
^ l

2
k , p

1
^p

2
^ l

3
k ,

and

(33) l
3
^ l

1
^ l

2
,

where any pair of conditions in (32) is a substitute for the whole triplet when (33) holds.
Also, if the common value of (l

1
, l
2
) and (l

1
, l
2
, l
3
) be d with the consequence that we

may write l
1
^ l F

1
d, l

2
^ l F

2
d, l^ l F

3
d where

(34) (l F
1
, l F
2
)^ (l F

1
, l F
2
, l F
3
)^1 and l F

3
^ l F

1
^ l F

2
,

the �rst two equations (for example) in (32) are tantamount to the pair

(35) p
1
/ p

2
/ p

3
, modd ,

and

l F
1
J(p

1
^ p

3
) �dK^ l F

2
J(p

3
^ p

2
) �dK ,

the latter member of which may be rewritten as

(36) l F
1

p
1

^ l F
2

p
2
^ l F

3
p
3
^ 0 .
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Hence, taking into account the conditions on k that imply that

(37) l
3
~x �Q

and that the congruence (35) holds, mod dd, we complete the �rst phase in the treatment
of J

4
(x,Q) by deducing that

(38) J�(x,Q; d )^ \
D"x#Q

\
l3D"x#QD

\
l3D:l1D;l2D
(l1D,l2D):1

P (x,Qdl F
3
; l F
1
, l F
2
; dd) ,

the innermost summand in which is de�ned by letting ?^?B,l1D, l2D
indicate the conjunction

of the conditions (36) and p
1
/ p

2
/ p

3
, mod", and (x log+A1x~T~x) then setting

(39) P (x,T ; l F
1
, l F
2
;")^ \

K
p2;T"p1~x

log p
1
log p

2
log p

3
.

The formula needed for P (x,T; l F
1
, l F
2
;") is obtained by an appropriate variation of

some version of the circle method that establishes Vinogradov's theorem on the represen-
tation of large odd numbers as the sum of three primes. Since no new principles are
involved, we deem it su�icient to describe the main steps in the demonstration, particularly
as the exhibition of all the extra details would become very wearisome. Adapted to facilitate
comparison where possible with recent treatments of Vinogradov's theorem such as that
given by Vaughan G4H, our procedure seems the simplest available within the constraints
imposed even though there is a small penalty to be paid in the shape of a minor Tauberian
process at the end. Possibly, however, another programme would be preferable if one were
to tackle the problem ab initio with the intention of producing a fully detailed proof.

First, as in certain preceding situations, the stipulation that (p
1

p
2

p
3
,")^1 may be

included in the conditions in ? without altering their e�ect. Secondly, in order to avoid
a situation in which the generating function in the circle method is not a simple product
of three independent sums over primes, we work initially with sums

(40) P
1
(x, t

1
, t
2
; l F
1
, l F
2
; ")^ \

K
t1"p1~x� p2~t2

log p
1
log p

2
log p

3

that involve non-negative parameters t
1
, t
2
such that t

2
~ t

1
~ x, dissecting them into sums

of segments P
2
through the decomposition expressed by

(41) P
1
(x, t

1
, t
2
; l F
1
, l F
2
; ")^ \

0"b~B
(b,B):1

\
p1/p2/p3/b,modB

^ \
0"b~B
(b,B):1

P
2
(x, t

1
, t
2
; l F
1
, l F
2
; b,") , say .

Now ready for the introduction of the circle method, we form the three functions

f
j
(h)^ \

pj/b,modB
log p

j
e2NiljDpjH ( j^1, 2)

and
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(42) f
3
(h)^ \

p3/b,modB
log p

3
e+2Nil3Dp3H

that produce the representation

(43) P
2
^

1
O
0

f
1
(h) f

2
(h) f

3
(h) dh

when the sums in (42) are subject to the conditions

(44) t
1
~ p

1
~ x ; p

2
~ t

2
; p

3
~ x .

It is therefore requisite to develop the appropriate properties of the generic sum

f (h)^ \
u"p~v

p/b,modB

log p e2NilpH (0~ u~v ~ x)

of which f
1
(h), f

2
(h), f

3
(h) are particular examples.

Assuming throughout in conformity with (19) and (37) that l~ logA1x and then
temporarily that "~ logA2x for a su�iciently large constant A

2
^A

2
(A

1
), we use a dissec-

tion of the range of integration of order M^x log+A3x in which the (non-intersecting)
major arcs are of the form �h^h �k �~1�M for rationals h �k in lowest terms with
k~ logA3x and in which the residual setm of h is contained in the set of minor arcs given by

(45) � h^ h
k �~

1
Mk

for logA3x~k ~ M .

On m we express f (h) as

(46)
1
"

\
u"p~v

log p e2NilHp \
0"c~B

e2Nic(p+b)#B

^
1
"

\
0"c~B

e+2Nibc#B \
u"p~v

log p e2Ni(lH;c#B)p

and then, setting M
1
^2"M, use Dirichlet's theorem to �nd a fraction h

1
�k
1
in lowest

terms (depending, in particular, on c) such that

� lh^
c
"
^

h
1

k
1
�~

1
M
1

k
1

and k
1

~ M
1
.

Since a basic technique in the practice of Diophantine approximation easily shews that
this and (45) imply that k

1
~k �2"l and hence that

1
2
logA3+A1+A2x~k

1
~ 2x logA2+A3x ,

a slight variation in the proof of Theorem 3.1 in G4H yields the estimate
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O � log4x �x k+121
^ x45^ x12k121 ��^ O (x log+A4x)

for the right-hand inner sum in (46) proved that A
3
be su�iciently large. Therefore f (h)

and thus any one of the f
i
(h) are subject to the same bound, and we thus conclude that

the contribution of m to the integral in (43) is

(47) O �x log+A4x � 1O
0
� f
1
(h) �2dh�

12 � 1O
0
� f
2
(h) �2�

12�
^O �x log+A4x \

p~x
log2p�^O (x2 log+A5x) .

On each major arc centred on h �k we write h^h �k ^� and estimate f (h) by con-
sidering the special value

f
4 � h

k �^ f � h
k
, w�^ \

u"p~w
p/b,modB

e2NihlDp#kD log p (u~w ~ v) ,

where k F^k � (l, k), l F^ l� (l, k), and where therefore (hl F, k F)^1. By the prime number
theorem for arithmetical progressions, for any positive constant A

6
we have

(48) f
4 � h

k�^ \
0"aD~kD
(aD,kD):1

e2NihlDaD# kD \
u"p~w

p/aD,modkD
p/b,modB

log p ^ O � \
p �k

log p�

^ \
0"aD~kD

(aD,kD):1� (kD,B) � (aD+b)

e2NihlDaD#kD � w^u
� (Gk F,"H)

^ O � x
logA6x��^ O (logx)

^
w^u
� (Gk F,"H)

\
0"aD~kD

(aD,kD):1� aD/b,mod (kD,B)

e2NihlDaD#kD^ O � x
logA6+A3x�

on the assumption that all parameters occurring are subject to conditions already laid
down either explicitly or implicitly. Next, if

k F^ ]
pa ��kD

pA ,

then let

k FF^ ]
pa ��kDD� p�B

pA ,

and deduce that the exponential sum in (48) is

\
d �kDD
k (d ) \

0"aD~kD
aD/0,modd

aD/b,mod (kD,B)

e2NihlDaD#kD ,
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the inner sum in which is taken over an arithmetical progression whose common di�erence
d (k F,") is certainly a proper division of k F unless d^k FF and (k F� (kF,"),")^1. Therefore
this exponential sum is zero save when (k F� (k F,"),")^1, in which case

f
4 � h

k�^
kJk F� (k F,")K
�JGk F,"HK

(w^u) e2NihlDaD#kD^ O � x
logA7x�

where now a F is the unique root, mod k F, of the simultaneous congruences

(49) l/0, modk F� (k F,") , l/b, mod (k F,") .

If, however, (k F� (k F,"),")~1, then

f
4 � h

k�^O � x
logA7x� .

Passing on to f (h)^ f (h �k ^�) through partial summation and the deployment of the
function

(50) v (�)^
v
O
u

e2Nilzy d z ,

we then deduce in the usual way that

f (h)^
kJk F� (k F,")K
�JGk F,"HK

v (�) e2NihlDaD#kD^ O � x
logA7x�^ O � x

logA7x
x
O
0
� l� �dz�

^
kJk F� (k F,")K
�JGk F,"HK

v (�) e2NihlDaD# kD^ O � x
logA7+A1+A3x�

^
kJk F� (k F,")K
�JGk F,"HK

v (�) e2NihlDaD# kD^ O � x
logA8x�

if (k F� (k F,"),")^1 but that

f (h)^O � x
logA8x�

otherwise.

To apply these estimates to the evaluation of the integral in (43) over the major arcs,
we specialize them for each function f

j
(h) and denote by k

j
, a

j
, and v

j
(�) the entities that

correspond to k F, a F, and v (�) in the above work. Then the condition (k � (k,"),")^1 is
equivalent to the conjunction of (k

j
� (k

j
,"),")^1 for i^1, 2, 3, the congruence (49) with

k F replaced by k then supplying a simultaneous solution a of (49) for the values k
1
, k

2
,

k
3
of k F. Hence in this instance
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f
1
(h) f

2
(h) f

3
(h)^ v

1
(�) v

2
(�) v

3
(�) e2N iha(l1D;l2D+l3D ) #k ]

1~j~3

kJk
j
� (k

j
,")K

� (Gk
j
,"H)

^ O � x3
logA8x

�
^ v

1
(�) v

2
(�) v

3
(�) ]

1~j~3

kJk
j
� (k

j
,")K

� (Gk
j
,"H)

^ O � x3
logA8x�

whereas, in the contrary case,

f
1
(h) f

2
(h) f

3
(h)^ O � x3

logA8x� .
Consequently, summing over all relatively prime h, k satisfying 0~h ~ k ~ M and then
integrating with respect to � over the interval (^1�M,1�M ), we see via (50) that the
contribution of the major arcs to P

2
is

(51) � \
k~logA3x(k#(k,B),B):1

� (k) ]
1~ j~3

kJk
j
� (k

j
,")K

� (Gk
j
,"H) � 1#M

O
+1#M

v
1
(�) v

2
(�) v

3
(�) d�

^ O � x2
logA8+3A3x�

^ � \
(k#(k,B),B):1

�k) ]
1~j~3

kJk
j
� (k

j
,")K

� (Gk
j
,"H)

^ O � 1
logA3x �� � '

O
+'

v
1
(�) v

2
(�)v

3
(�) d�

^ O � 1
l F
1
l F
2
l F
3

'
O

1#M

d�
�3 ��^ O � x2

logA8+3A3x�
^ �SB,l1D, l2D, l3D^ O � 1

logA3x�� I
t1, t2, x

^ O � x2
logA9x� , say ,

provided that A
3
and A

6
^A

6
(A

3
) be su�iciently large.

The integral I is evaluated in the standard way by Fourier's integral theorem1).
Arising �rst as a triple integral with variables of integration z

1
, z
2
, z
3
, the integrand is trans-

formed by means of the substitution

Z
1
^ z

1
, Z

2
^ z

2
, Z^ l F

1
z
1

^ l F
2

z
2
^ l F

3
z
3
,

of absolute modulus l
3
so it adopts the guise of the Fourier transform

1
l F
3

'
O
+'

F (Z) e2NiZy d Z .

1) It seems we must part company with Vaughan's treatment at this point because his application of the
sum l (b) in equation (3.6) of G4H seems only to be appropriate when the coe�icients of all three primes in an
equation of type m

1
p
1

^ m
2

p
2

^ m
3

p
3
^n are equal to ^1.
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Consequently

(52) I^
1
l F
3

F (0)^
(x^ t

1
) t
2

l F
3

because the limits for z
1
, z

2
implied by the �rst two constituents of (44) imply that z

3
~ x

when l F
1

z
1

^ l F
2

z
2
^ l F

3
z
3
^0 and l F

1
^ l F

2
^ l F

3
.

To evaluate the singular series by Euler's theorem, �rst note that

� (Gk
j
,"H)^�J"(k

j
� (k

j
,"))K^� (")� Jk

j
� (k

j
,")K

when (k � (k,"),")^1 so that the general term in the series is

1
�3 (")

� (k) ]
1~ j~3

kJk
j
� (k

j
,")K

�Jk
j
� (k

j
,")K

((k � (k,"),")^1) ,

in which the multiplier of 1��3(") is multiplicative in k. Therefore, remembering that
l F
1
, l F
2
, l F
3
are co-prime in pairs and that one of them is even, we have

S^
1
�3 (")

]
p�l1Dl2D l3DB

�1^ 1
(p^1)2� ]

p � l1Dl2D l3D
p�B

�1^
1

(p^1)� ]
pb ��B

(1^� ( p) ^ � � � ^� (

pB))

^
"
�3(")

]
p!2

�1^ 1
(p^1)2� ]

p � l1Dl2D l3D
p�2B

�1^ 1
(p^1)�+1

^]
p �B
p!2

�1^ 1
(p^1)2�+1 ]

p:2
p�B
�1^

1
(p^1)�

^
1
"� (")

]
p!2

�1^ 1
(p^1)2� ]

p � l1Dl2D l3Dp�2B
�1^ 1

(p^1)�+1 ]
p �B
p!2

�1^ 2
p �+1 ]

p �B
p:2

4 ]
p�B
p:2

2

(53) ^
2C

5
"� (")

E (")F (")GB (lF1lF2lF3) ,

where

E (")^ �2,1 , if " be even ,
if " be odd,

C
5
^ ]

p!2
�1^ 1

(p^1)2� , F (")^ ]
p �B� p!2 �1^

2
p^2� ,

and GB (L)^ ]
p � L� p�2B �1^

1
p^2� .

(54) �
The summation of the content of equations (47), (51), (52), and (53) produces an

asymptotic formula for P
2
, which when summed over b as in (41) yields
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The summation of the content of equations (47), (51), (52), and (53) produces an
asymptotic formula for P

2
, which when summed over b as in (41) yields

P
1
(x, t

1
, t
2
; l F
1
, l F
2
; ")^

2C
5

" l F
3
(x^ t

1
) t
2

E (")F (")GB (l F1l F2 l F3)^ O � x
logA10x� .

From this, by (39) and (40) and some simple calculations involving interchanges in the
orders of summation and integration, it follows that

P
3
(T )^

x
O
T

P (x,T
1
; l F
1
, l F
2
; ") dT

1
^ \

K
p2;T"p1~x

(p
1
^p

2
^T ) log p

1
log p

2
log p

3

^ \
K

p2;T"p1~x

log p
1
log p

2
log p

3
p1+T
O
p2

dt

^
x+T
O
0

P
1
(x,T ^ t, t; l F

1
, l F
2
; ") dt

^
2C

5
"l F

3
E (")F (")GB (l F1l F2l F3)

x+T
O
0

(x^T^ t) tdt ^ O � x2 (x^T )
logA10x �

^
C
5

3"l F
3

E (") F (") GB (l F1l F2 l F3) (x^T )3^ O � x2 (x^T )
logA10x � ,

which is an Abelian version of the result we seek. To extract what is needed, we perform
a ""de la Valle> e Poussin di�erentiation'' by choosing H such that 0~H~x^T, T and
using the inequality

1
H �P

3
(T )^P

3
(T ^ H )�~ P (x,T ) ~

1
H �P

3
(T^H )^P

3
(T )�

that implies that

P (x,T )^
C
5
"l F

3
E (")F (")GB (l F1l F2l F3) (x^T )2^ OJH (x^T )2K^ O �x2 (x^T )

H logA10x �
in view of well-known inequalities for divisor-type functions. Hence, setting

H ^ (x^T ) log+12A10x

and con�rming through (39) that H ~ x log+A1x ~T for su�iciently large A
1
, we conclude

that

(55) P (x,T; l F
1
, l F
2
;")^

C
5
"l F

3
E (")F (")GB (l F1l F2l F3) (x^T )2^ O � x2

logA11x�
when ", l F

1
, l F
2
, l F
3
satisfy the stipulations laid down at the point where the dissection of the

unit circle was introduced. But, since P (x) certainly does not exceed log3x times the number
of positive integers n

1
, n
2
not exceeding x that are congruent to each other, mod", we have
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P (x,T )^
C
5
"l F

3
E (")F (")GB (l F1l F2l F3) (x^T )2

^O �" log3x � x
"

^ 0 (1)�2�^ O � x2 log x
" �

^O � x2 log3x
" �

^ O � x2
logA11x�

for logA2x~"~ x and A
2
su�iciently large; also, this result is trivial for "~x because

then P (x,T ) is zero from its genesis at the beginning of this section. Thus (55) is valid for
all values of l F

1
, l F
2
in question whatever the value of ".

Having secured our formula for P (x,T ), we prepare for its use by estimating

(56) P
3
(x,Qdl F

3
; l F
1
, l F
2
; d)^ \

d~x

k (d )
d

P (x, Qdl F
3
; l F
1
, l F
2
; dd) ,

which is the innermost sum in the quadruple sum obtained by substituting the right side
of (55) in (31) by way of (38) and then �rst summing over d. We get

(57) P
3
(x,Qdl F

3
; l F
1
, l F
2
; d)

^
C
5
dl F

3
(x^Qdl F

3
)2 \

d~x

k (d ) E (dd) F (dd) G
dD(l F1l F2 l F3)

d 2
^ O � x2

logA11x
\
d~x

1
d �

^
C
5
dl F

3
(x^Qdl F

3
)2

'
\
d:1

k (d ) E (dd) F (dd)G
dD (l F1l F2 l F3)

d 2
^ O �x2 \

d!x

1
d2�^ O � x2

logA12x �
^

C
5
dl F

3
(x^Qdl F

3
)2B (d, l F

1
l F
2
l F
3
)^ O � x2

logA12x� , say ,

the factor B (d, l F
1
l F
2
l F
3
) being evaluated by the relations

F (dd)^ F (d) ]
p �d� p�D
p!2

�1^
2

p^2�^F (d) FD (d ) , say ,

G
dD (L)^GD (L) ]

p �L
p�2D� p �d

�1^ 1
p^1�^GD (L) GD,d (L) , say ,

and

E (dd)^ � 2,E (d ) ,
if d even,
if d odd,

that �ow from (54). Whereupon, for d even, we have
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B (d,L)^ 2F (d) GD (L)
'
\
d:1

k (d ) FD (d ) GD,d (L)
d2

^ 2F (d) GD (L) ]
p �D �1^

1
p2� ]

p�D
p �L
�1^ 1

p (p^1)� ]
p�D
p�L
�1^ 1

p (p^2)�
^

3
2

F (d) GD (L) ]
p!2

�1^ 1
p (p^2)� ]

p �D
p!2

�1^ 1
p2� �1^ 1

p (p^2)�+1

^ ]
p �L� p�D �1^

1
p (p^1)� �1^ 1

p (p^2)�+1

^
3
2

]
p!2

�1^ 1
p (p^2)� ]

p �D
p!2

�1^
2

p^2^1� p� ]
p �L� p�D �1^

1
p^2^1� p�

by Euler's theorem and (54). A similar calculation being applicable when d is odd, we
conclude that

(58) B (d, L)^
1
2

C
6

E<(d)' (d)!D (L) ,

in which, setting

(59) h
2
(p)^ p^2^

1
p

(p odd) , h
2
(n)^ ]

p �n
p!2

h
2
(p) ,

(compare with the de�nition of h
1
(n) in (27)), we have

C
6
^ ]

p!2
�1^ 1

p (p^2)� , ' (d)^ ]
p �D� p!2 �1^

2
h
2
(p)� ,

!D (L)^ ]
p �L� p�2D �1^

1
h
2
(p)�^ \

d �L
(d,2D):1

k2 (d )
h
2
(d )

,

and E<(d)^ � 3,1 , if d even ,
if d odd.

(60) �
Our initial preparations for the estimation of S<

4
(x ; Q

1
,Q) are complete save for a

�nal transformation that depends in part on the relations

(61) !D1(dd
2
)^!D1(d )!

dD1(d2) , !d (d)^!(dd) �!(d )

where

(62) !(d )^!
1
(d ) .
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To introduce this step let us gather up what has been achieved in (57) and (58) to infer that

J
4
(x ; Q)^

1
2

C
5

C
6

\
D"x#Q

E<(d)' (d)
d

\
lD"x#QD

(x^Qdl F)2
l F !D (l F) \

l1D;l2D:lD
(l1D,l2D):1

!D (l F1)!D (l F2)

^ O � x2
logA11x

\
D"x#Q

\
l1D, l2D"x#QD

1�
^

1
2

C
5

C
6

Q2 \
D"x#Q

E<(d)' (d)d \
lD"x#QD

(x �Qd^ l F)2
l F !D(l F) \

l1D;l2D:lD
(l1D,l2D):1

!D (l F1)!D (l F2)

^ O � x2
logA11+2A2x�

(63) ^
1
2

C
5

C
6

Q2J(x �Q)^ O � x2
logAx� , say ,

in view of (19). The coprimality condition in the innermost sum being an impediment to
the future treatment of J(y), we remove it by a�ecting the summand in it with the factor

\
d �l1D� d �l2D

k (d ) ,

whence, if we write l F
1
^ l

1
d, l F

2
^ l

2
d, and change the order of summation, we arrive at

J(y)^ \
D"y

E<(d)' (d)d \
d"y#D
k (d ) \

l"y#Dd

(y �d^dl)2
dl !D (dl) \

l1;l2:l
!D (dl

1
)!D (dl

2
)

^ \
Dd"y
k (d )E<(d)' (d) dd!3D (d ) \

l"y#Dd

(y �dd^ l)2
l !Dd (l) \

l1;l2:l
!Dd (l1)!Dd (l2)

^ \
B"y
"I (") \

l"y#B

(y �"^ l)2
l !B (l) \

l1;l2:l
!B (l1)!B (l2)

(64) ^ \
B"y
" I (")J

1
(y �",") , say ,

in virtue of (61).

Furthermore, by (61) and (62), we �nd that I (") is the multiplicative function

!3(") \
dD:B

k (d )E<(d)' (d)
!3 (d)

,

which for an odd prime power pA is

' (p)^!3(p)

or zero according as a^1 or a~1; similarly for "^2A it is
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E<(2)^1^ 2

when a^1 but is zero otherwise. Hence, as

!3 (p)^' (p)^ �1^
1
h
2
(p)�3^ �1^

2
h
2
(p)�^ 1

h
2
(p) �1^

3
h
2
(p)

^
1
h2
2
(p)�

^
q (p)
h
2
(p)

, say ,

for p~2 by (60) and (62), we conclude from (64) that2)

(65) J(y)^ \
B~y

k (")"E �(")q (")
h
2
(")

J
1
(y �",")

on the understanding that

(66) q (")^ ]
p �B� p!2

q (p) ,

and E�(")^1 or ^2 according as " is odd or even.

6. The programme for the analysis of J
1
(z,B)

We have reached a point on our ascent where some nicety in the analysis is needed
because several plausible paths we might take do not lead in the right direction. The source
of the estimation of J

1
(z,") is essentially the following corollary

(67) J
1
(z,")^ \

l"z

(z^ l)2
l

\
d �l

(d,2B):1

k2 (d )
h
2
(d )

\
l1;l2:l

!B (l1)!B (l2)

^ \
d"z

(d,2B):1

k2 (d )
h
2
(d )

\
l"z

l/0,modd

(z^l)2
l \

l1;l2:l
!B (l1)!B (l2)

^ \
d"z

(d,2B):1

k2 (d )J<
1
(z,"; d )

h
2
(d )

, say ,

of (64) and (60) and the fact that there are two di�erent methods for dealing with
J<
1
(z,"; d ), one of which is unsatisfactory for larger values of d and the other for smaller

values of d. Although there is an intermediate range of d for which both methods yield
signi�cant information, direct use of the two consequential estimates in the summations
over d and " does not lead to adequately small remainder terms in the ensuing answer.

2) Owing to the presence of factors such as (m^v)2 in sums over a variable m, it is frequently immaterial
whether the upper limit of summation is given by m~v or m ~ v. We choose the inequality that seems most
natural in each context.
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Instead, we must compare the two estimates for J<
1
(z,"; d ) in the common area of im-

portance in order to fashion a new expression that permits the summation over d to be
performed in a semi-implicit and satisfactory manner.

Although the programme could be directly applied as described to J
1
(z,") itself,

it actually proves better for technical reasons to aim it in the �rst place at the surrogate sum

(68) J
2
(z
1
,")^ \

l"z1
(z
1
^ l)2l!B (l) \

l1;l2:l
!B (l1)!B (l2)

^ \
d"z1

(d,2B):1

k2 (d )
h
2
(d )

\
l"z1

l/0,modd

(z
1
^ l)2 l \

l1;l2:l
!B (l1)!B (l2)

^ \
d"z1

(d,2B):1

k2 (d )J<
2
(z
1
," ; d )

h
2
(d )

, say ,

which is connected with J
1
(z,") by means of

Lemma 3. Let

s
0
(u)^ \

n~u

(u^n)2a
n

n
, s

2
(u)^ \

n~u
(u^n)2na

n
,

where n denotes a positive integer and u~0. Then

s
0

(u) ^
s
2

(u)
u2

^6 u
u
O
0

s
2
(t)dt
t4

^12u2
u
O
0

s
2
(t)dt
t5

.

First, if

s
1
(u)^ \

n~u
(u^n)2a

n
,

then

(69) s
0
(u)^

s
1
(u)
u

^3u2
u
O
0

s
1
(t)dt
t4

.

Not being a mere consequence of partial summation, this is veri�ed by noting that

s
0
(u)^

s
1
(u)
u

^
1
u

\
n~u

(u^n)3a
n

n

and that

3u2
u
O
0

s
1
(t)dt
t4

^ 3u2
u
O
0

\
n~t

(t^n)2a
n

dt
t4

^ 3u2 \
n~u

a
n
u
O
n

(t^n)2dt
t4

^
1
u

\
n~u

(u^n)3a
n

n
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by an easy integration. Then, stating s
1
(u) in terms of s

2
(u) by means of the formula (69)

for the series with n a
n
in place of a

n
, we obtain the lemma by substituting the resulting

expression for s
1
(u) in the same formula (69) and transforming into a single integral the

double integral that arises.

Lastly, in anticipation of what is to come, it is helpful to make some comment on
future notational conventions. Owing their origin in an increasingly indirect and implicit
manner from the originally given x and Q, the entities y, z, z

i
, ", d will where necessary

be assumed to be subject to the restraints

(70) y ^x �Q ; "~ y ; z^ y �"~1; 1~ z
1

~ z; 0~z
2

~ z
1
; d ~ z ;

d square-free; (d, 2")^1

and any other stipulations that are implicitly imposed by de�ned domains of summation.

7. Estimation of J<
2
(z
1
, B; d ) -- �rst method

If we scrutinize the conditions of summation in the sum J<
2
(z
1
," ; d ) tacitly de�ned

in (68), we see that (l
1
, d ), (l

2
, d ) in the inner addition have a common value e, say,

dividing d, wherefore we set

l
1
^ el F

1
, l

2
^ el F

2
, d F^ d �e , " F^"e

so that

(71) "d^" Fd F, (d F, 2" F)^1, (l F
1
l F
2
, d F)^1

because of (70). Hence, then suppressing the dashes from l F
1
, l F
2
for notational convenience

and exploiting (61), we have

J<
2
(z
1
," ; d )^ \

e �d
e3!2 (e) \

l1;l2~z1#e
l1;l2/0,moddD
(l1l2, dD):1

� z
1

e
^ l

1
^ l

2�2 (l1^ l
2
)!BD (l1)!BD (l2)

(72) ^ \
e �d

e3!2B (e)J
3
(z
1
�e,"F; d F) , say ,

wherein

J
3
(z
2
,"F; d F)^ 2 \

l1;l2~z2
l1;l2/0,moddD
(l1l2, dD):1

(z
2
^ l

1
^ l

2
)2!BD (l1) l2!BD (l2)

by symmetry.

Even now we are not yet quite ready to commence detailed calculations, since we
need to add one last link to the chain of transformations of J

4
(x; Q) through the theory

of characters, denoting a character s, mod c, by s
c
or s<

c
according as it is principal or

non-principal. We end up with the equation
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J
3
(z
2
,"F; d F)^

2
� (d F)

\
l1;l2:z2

(z
2
^ l

1
^ l

2
)2!BD (l1) l2!BD (l2) \

S,moddD
s (^1) s (l

1
) s� (l

2
)

^
2
� (d F)

\
l1;l2:z2

(z
2
^ l

1
^ l

2
)2s

dD
(l
1
)!BD(l1) sdD (l2) l2!BD (l2)

^
2
� (d F)

\
S�dD

s<
dD
(^1) \

l1;l2:z2
(z
2
^ l

1
^ l

2
)2s<

dD
(l
1
)!BD (l1) s�<dD (l2) l2!BD (l2)

^
2
� (d F)

J
4
(z
2
,"F; d F)^

2
� (d F)

\
S�dD
s<
dD
(^1)J

5
(z
2
,"F; s<

dD
)

(73) ^
2
� (d F)

J
4
(z
2
,"F; d F)^

2
� (d F)

J
6
(z
2
,"F; d F) , say ,

whose constituents are in a form suitable for the analysis we plan.

We consider J
4
�rst, stating at once that its evaluation depends on whether d F^1,

or d F be a prime �, or d F have more than one prime factor. Being obviously the generating
function for the inner sum in the representation

(74) \
l1"z2
s
dD
(l
1
)!BD (l1) \

l2"(z2+l1)
(z
2
^ l

1
^ l

2
)2s

dD
(l
2
) l
2
!BD (l2)

^ \
l1"z2
s
dD
(l
1
)!BD (l1)I(z

2
^ l

1
,"D; d F) , say ,

of J
4
(z
2
,"F; d F), the Dirichlet's series

F (s)^FBD,dD (s)^
'
\
l:1

s
dD
(l)!BD (l)
l s

will also be seen to be the developing agent for the outer sum after it has been used to
evaluate I(v,"F; d F). For p~1, de�nition (60) implies that3)

(75) F (s)^ ]
p�2BDdD �1^ �1^

1
h
2
(p)� 1

ps �1^ 1
ps�+1� ]

p �2BD, p�dD �1^
1
p s�+1

^ L (s, s
dD
) ]
p�2BDdD �1^

1
h
2
(p) ps�^L (s, s

dD
) F (1)

2BDdD (s) , say ,

while, for p~0,

F (1)
2BDdD (s)^ ]

p!2
�1^ 1

p s;1�+1 ]
p!2

�1^
1

h
2
(p) p s� �1^ 1

p s;1� ]
p �BDdD
p!2

�1^
1

h
2
(p) p s�+1

3) The condition p�d F in the second product on the line below is unnecessary but helpful.
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(76) ^ f (s ^1) �1^ 1
2s;1� M (s)? ("Fd F, s) , say .

Also, for p~
1
2
in the �rst place,

(77) M (s)^ ]
p!2

�1^ 1
p2s;2

^
1

p s;2
2^1�p

1^2�p^1� p2
^

2^1� p
p2s;3 (1^2�p^1� p2)�

^ ]
p!2

�1^ 1
p2s;2� �1^

2^1� p
1^2�p^1� p2

1
ps;2 �1^

1
p s;1�+1�

^
N (s)
f (2s ^2)

, say .

This with (75) and (76) supplies an analytic continuation for F (s) that is valid in any

extension of the half-plane p~^
1
2
for which f (2 s ^2) is zero-free; here N (s) is not only

regular and absolutely bounded for p~^
3
4

but annihilates any poles of ? ("Fd F, s).
Therefore the integrand in the formula

1
2
I(v,"F; d F)^

1
2n i

c;i'
O

c+i'
FBD,dD (s^1)

v s;2
s (s ^1) (s ^2)

ds (0~v ~ z
2
; c~2)

has a factor

]
p �dD
�1^ 1

p s+1� f (s^1)

with residue � (d F) �d F at s^2; furthermore, its factor

]
p �dD
�1^ 1

p s+1� f (s^1) f (s)

is regular at s^1 save when d F^1, in which case it has residue f (0). Consequently, if we set

(78) C
7
^ ]

p!2
�1^

1
h
2
(p) p� ,

t
2
(n)^ ]

p �n� p!2
�1^

1
h
2
(p) p�+1^ ]

p �n� p!2

h
2
(p)

p^2

and

o
dD
^ � 1,0, if d F^1 ,

if d F~1 ,

then we conclude for 0~v ~ z
2
that
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(79)
1
2
I(v,"F; d F)^

1
24

C
7
� (d F)

d F
t
2
("Fd F)v4^

1
12
o
dD
f (0)M (0)? ("Fd F, 0) v3

^ O �"FE d F34 v52 e+AD	log(v;2)�
because (75), (76), and (77) imply

F
dD,BD (s^1)^O �� f (s^1) f (s)

f (2 s) � d F 34"FE�^O �( � t �^1)32 d F 34"FE�
in a region of type

1
2
^A F � log( � t �^ 2)~p~

3
4
.

If (79) be substituted in (74) in company with the bound

\
l~w
!BD (l)^O (w) ,

we get

(80)
1
2
J
4
(z
2
,"F; d F)^

1
24

C
7
� (d F)

d F
t
2
("Fd F) \

l1"z2
(z
2
^ l

1
)4s

dD
(l
1
)!BD (l1)

^
1
12
o
dD
f (0) M (0)? (2"Fd F, 0) \

l1"z2
(z
2
^ l

1
)3s

dD
(l
1
)!BD (l1)

^ O �"DE d F34 z722
e+AD	log(z2;2)� ,

in which the two sums are estimated by the two formulae

(81)
1
24

\
l"u

(u^l)4s
dD
(l)!BD (l)^

1
2n i

c;i'
O

c+i'
F
dD,BD (s)

u s;4
s (s ^1) (s ^2)(s ^3) (s ^4)

d s ,

(82)
1
6

\
l"u

(u^ l)3s
dD1
(l)!BD (l)^

1
2n i

c;i'
O

c+i'
F
dD,BD (s)

u s;3
s (s ^1) (s ^2) (s ^3)

d s

that are valid for 0~u^z
2
and c~1, the main point of di�erence from what went before

being the reaction between the denominator s and the behaviour of F
dD,BD (s) at s^0. To

apply the second formula to the second term in the right of (79) when d F^1, the main

fact needed is that the integrand then has a pole with residue
1
24

C
7
t
2
("F)u4 at s^1 so

that the sum in (82) is

(83)
1
24

C
7
t
2
("F) u4^ O �u134 � .

Similarly, for any value of d F, the pole of the integrand in (81) has residue

(84)
1

120
C
7
� (d F)

d F
t
2
("Fd F) u5
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at s^1, although the behaviour at s^0 is more complicated than before. First, if d F have
more than one prime factor, then

L (s, s
dD
)^ ]

p �dD
�1^ 1

ps� f (s)

has a zero of multiplicity greater than one at s^0 and the integrand is therefore regular
there. Next, if d F^�,

L (s, s
dD
)

s
^ f (0) log�

at s^0, the residue being

(85)
1
48
f (0) M (0)? ("Fd F, 0) u4 log�

by (76). Also, if d F^1, the integrand is

� 1
s2

^
c
s

^ � � �� �1^ 1
2s;1� f (s) M (s)? ("Fd F, s)

us;4
(s ^1)(s ^2) (s ^3) (s ^4)

near s^0 and the residue at s^0 is therefore

(86) f (0)M (0)? ("Fd F, 0)
u4
48 � f F(0)f (0) ^

M F(0)
M (0)

^
? F("Fd F, 0)
? ("Fd F, 0)

^1^
1
2
^

1
3
^

1
4

^ log 2^ log u ^c�
^ f (0) M (0)? ("Fd F, 0)

u4
48 � f F(0)f (0) ^

M F(0)
M (0)

^
? F("Fd F, 0)
? ("Fd F, 0)

^
25
12

^ log 2^ log u ^c� .
Finally, by the reasoning used in (79), the residual integral in all cases is

(87) O �"F Ed F34 u72 e+AD	log(u;2)� .
Let us collect together the results in (80), (83), (84), (85), (86), and (87) to form an

asymptotic formula for
1
2
J
4
(z
2
,"F; d F), noting that the result for z

2
~1 is correctly derived

but trivial. In all situations there is a residual term

(88) O �"F Ed F 34 z722
e+AD	log (z2;2)�

and, by (84), a main term

(89)
1

120
C2
7
�2 (d F)

d F2
t2
2
("d ) z5

2
,
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about which in fact all we shall need to know is that it is of the form A (d F,"F)z5
2
. Also

when d F^� there is an additional term

(90)
1
48

C
7
f (0) M (0)

� (�)
�
t
2
("d )? (2"d, 0) z4

2
log�

while, if d F^1, there is instead the term

(91)
1
48

C
7
f (0)M (0)t

2
("d )? ("d, 0) � f F(0)f (0) ^

M F(0)
M (0)

^
? F("d, 0)
? ("d, 0)

^ log z
2

^c^
13
12

^ log 2� z4
2

to be added.

The assessment of the constituent J
5
(z
2
,"F;s<

dD
) in the formula (73) for J

6
(z
2
,"F; d F)

is based on the generating functions

FBD(s, s<
dD
)^

'
\
l:1

s<
dD
(l)!BD (l)
l s

and FBD (s, s�<
dD
), the former by analogy with the formulae for FBD, dD (s) being equal through

analytic continuation to the last element in the chain of equations

(92) L (s, s<
dD
) ]
p�2BD �1^

s<
dD
(p)

h
2
(p) ps�

^ L (s, s<
dD
) L (s ^1, s<

dD
) ]
p �2B �1^

s<
dD
(p)

ps;1 � ]
p�2B �1^

s<
dD
(p)

h
2
(p) ps� �1^ s<dD (p)

ps;1 �
^L (s, s<

dD
) L (s ^1, s<

dD
) X (s)

where

(93) X (s)^X (s,"F; s<
dD
)^ O ("DE) �p~^

1
4� .

To direct this to the sums arising from the counterpart

(94) J
5
(z
2
,"F; s<

dD
)^ \

l1"z2
s<
dD
(l
1
)!BD (l1) \

l2"z2+l1
(z
2
^ l

1
^ l

1
)2s�<

dD
(l
2
) l
2
!BD (l2)

^ \
l1"z2
s<
dD
(l
1
)!BD (l1)I(z

2
^ l

1
,"; s�<

dD
), say ,

of (74), the only substantial property of the Dirichlet's L-functions needed is

Lemma 4. For a Dirichlet's L-function formed with a non-principal character s, mod q,
we have
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L (s, s)^ � 0 (J(� t �^1) qK12 (1+P);E) ,

0 (J(� t �^1) qK12+P;E) ,

if 0 ~p~1 ,

if p~0 .

First

1
2
I(v,"F; s�<

dD
)^

1
2ni

c;i'
O

c+i'
FBD (s, s�<

dD
)

vs;3
(s ^1)(s ^2) (s ^3)

ds (c~1)

^
1

2ni
+G;i'

O
+G+i'

FBD (s, s�<
dD
)

vs;3
(s ^1) (s ^2)(s ^3)

ds ,

since the initially valid choice for c can be reduced to ^g^^
1
8
by Lemma 4 and the

regularity of the integrand for p~^g. Secondly, by (94),

J
5
(z
2
,"F; s<

dD
)^

1
2ni

+G;i'
O

+G+i'

FBD(s, s�<
dD
)

(s ^1)(s ^2) (s ^3)
\
l"z2

(z
2
^ l)s;3s<

dD
(l)!BD (l)ds ;

here a well-known formula in the calculus of residues shews that the sum in the integrand
equals

^
1

2ni

cD;i'
O

cD+i'
FBD (s F, s<

dD
)
!(s ^4)!(s F)
!(s ^ s F^4)

zs;sD;3
2

ds F (c F~1)

^ z s;3
2

FBD (0, s<dD)^
1

2ni
+G;i'

O
+G+i'

FBD (s F, s<
dD
)
!(s ^4)!(s F)
!(s ^ s F^4)

zs;sD;3
2

ds F ,

where at this point in accordance with the conventions laid down in * 2 the symbol !(s)
denotes the Gamma-function and not the arithmetical function de�ned in (60). Therefore

(95) J
5
(z
2
,"F; s<

dD
)^

1
2n i

FBD (0, s<dD)
+G;i'

O
+G+i'

FBD (s, s�<
dD
)

zs;3
2

(s ^1) (s ^2)(s ^3)
ds

^
1

4n2
+G;i'

O
+G+i'

+G;i'
O

+G+i'
FBD (s, s�<

dD
) FBD (s F, s<

dD
)
!(s ^1)!(s F)
!(s ^ s F^4)

zs;sD;3
2

d s ds F ,

to estimate which we need the order relation

!(s FF)# (� t FF �^1)PDD+12 e+12N � t DD � (�p FF �~g
1
)

that comes from Stirling's theorem. If p^p F^^g throughout, this gives

(96)
!(s ^1)!(s F)
!(s ^ s F^4)

^O � (� t �^1)12+G (� t F �^1)+12+G

(� t �^ � t F �^1)72+2G �
^O � 1

(� t �^1)74 (� t F �^1)74�
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when t and t F are of the same sign. On the other hand, in the contrary instance, we may
consider the typical cases where � t F �~2 t and where � t �~ � t F �~2 � t �, in the former of which

(96) still holds because � t F^ t �~ � t �,
1
2
� t F � ; but in the latter case, being

O �(� t �^1)12+G (� t F �^1)+12+G e+12 N � t �� ,
the left-side of (96) is still obviously subject to the estimate in its right-side. Consequently,
by (95), (96), and Lemma 4,

(97) J
5
(z
2
,"F; s<

dD
)^O �"FEd F1;32 G;E z3+G2 �

^ O �"FEd F1;3G;E z3+2G2
'
O
0

'
O
0

d td t F

(t ^1)54+
3G
2 (t F^1)54+

3G
2
�

^O �"FEd F1;3G
2 ;E z3+G2 �^ O ("FEd F1;3G;E z3+2G

2
) ;

a better estimate could be obtained by using mean-value theorems for L-functions but
would not confer any greater bene�ts for our present investigation.

All is in place for the production of the earlier formula for J<
2
(z
1
,"; d ). First, by

(73) and (97), the contribution of J
5
(z
1
�e,"F; s<

dD
) to J<

2
(z
1
,"; d ) via (72) is

(98) O �"Ed1;32 G;E z3+G1
\
e�d

!2B (e)

e1;12 G�^ O �"Ed 1;3G;E z3+2G1
\
e�d

!2B (e)
e1� G �

^O �"Ed 1;32 G;E z3+G1 �^ O �"Ed 1;3G;E z3+2G1 � .
Also, by some minor calculations, we see that the combined e�ect of (88), (89), (90), and
(91) on J<

2
(z
1
,"; d ) in (72) is

(99) H
1
(", d ) z5

1
^

C
7
f (0)M (0)t

2
("d )? ("d, 0)!2 (d ) z4

1
12 d

\
��d

log�
!2 (�)

^
C
7
f (0) M (0)t

2
("d )? ("d, 0)!2 (d ) z4

1
12 d � f F(0)f (0) ^

M F(0)
M (0)

^
? F("d, 0)
? ("d, 0)

^ log
z
1

d
^c^

13
12

^ log 2�^ O � z721
d 34"E
� (d )

\
e�d

!2B (e)

e14
e+AD	log'(z1#e);2(�

^H
1
(", d ) z5

1
^ H

2
(", d ) z4

1
log z

1
^ H

3
(", d ) z4

1
^ O �"Ed+14 z721

e+AD	log(z1;2)� , say ,
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where H
1
(", d ) has its provenance in the function A (d F,"F) appearing implicitly in (89).

Thus J<
2
(z
1
,"; d ) is the sum of the expressions in the �nal terms of (98) and (99).

Lastly, having found our �rst formula for J<
2
(z
1
,"; d ), we can comment on our

choosing to make J
2
(z,") the �rst object of the treatment. A barrier to a simple analysis

of the sum J<
1
(z
1
,"; d ) in (67) is the presence of the denominator l that precludes e�ec-

tive iterated summations over l
1
and l

2
and that necessitates instead some unwelcome

device such as the wholesale use of double contour integrals. Although the most obvious
method of overcoming this di�iculty would be simply to remove the denominator l and
to use (69) in place of the consequential Lemma 3, the calculations parallel to those we
employed would become onerous in connection with multiple poles occurring in the inte-
grands; however, by changing the ro% le of l from denominator to numerator, we see that
the �rst and second integrations are considerably simpli�ed.

8. Estimation of J<
2
(z
1
,B ; d ) -- second method

In the second procedure for calculating J<
2
(z
1
,"; d ) we deal directly with the inner

sum

:B (l)^ \
l1;l2:l

!B (l1)!B (l2)

that is contained in its implicit de�nition by (68) as a double sum.

Since

!(L)^ \
mr:L

(m,2B):1

k2 (m)
h
2
(m)

by (60), we have

:B (l)^ \
m1,m2"l

(m1,m2,2B):1

k2 (m
1
) k2 (m

2
) l (m

1
, m

2
, l)

h
2
(m

1
) h

2
(m

2
)

,

where l (m
1
, m

2
, l) is the number of positive solutions in r

1
, r
2
of the indeterminate equa-

tion m
1

r
1

^ m
2

r
2
^ l and where therefore

l (m
1
,m

2
, l)^ � l� Gm

1
, m

2
H^ O (1) ,

0 ,
if (m

1
, m

2
) � l,

otherwise .

Consequently, if we write

:<B (l)^ \
(m1m2,2B):1
(m1,m2)�l

k2 (m
1
) k2 (m

2
) (m

1
,m

2
)

h
2
(m

1
) h

2
(m

2
) m

1
m
2

for convenience, then4)

4) It is helpful to keep the condition 2�m
1

m
2
in what follows because h

2
(2) is negative.
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:B (l)^l:<B (l)^O � \
m1,m2"l
2�m1m1

k2 (m
1
) k2 (m

2
)

h
2
(m

1
) h

2
(m

2
) �^ O �l \

m1~l
2�m1m2

k2 (m
1
) k2 (m

2
) (m

1
, m

2
)

h
2
(m

1
) h

2
(m

2
) m

1
m
2
�

^ O (log2l)^ O �l \
m1~l
2�m1

k2 (m
1
)

h
2
(m

1
) m

1
\

2�m2

k2 (m
2
) (m

1
, m

2
)

h
2
(m

2
) m

2
�

^O (log2l)^ O �l \
m1~l
2�m

k2 (m
1
) p

+1
(m

1
)

h
2
(m

1
) m

1
�

(100) ^O (log2l)^ O (1)^O (log22l)

by elementary calculations implicating divisor-type functions. Also, exploiting the gener-
alization of Euler's theorem to series containing multiplicative functions f (m

1
, m

2
) such

that f (m F
1

m FF
1
, m F

2
m FF
2
)^ f (m F

1
,m F

2
) f (m FF

1
, m FF

2
) when (m F

1
m F
2
, m FF

1
m FF
2
)^ 1, we deduce that

:B (l)^ ]
p�2B
p�l

�1^
2

h
2
(p) p� ]

p�2B
p �l

�1^
2

h
2
(p) p

^
1

h2
2
(p) p� ,

from which and the equality

(101) 1^
2

h
2
(p) p

^
(p^1)2
h
2
(p) p

it follows that

(102) :<B (l)^ ]
p�2B �1^

2
h
2
(p) p� ]

p�2B
p �l

�1^
1

h
2
(p) (p^1)2�

^
C
8

U (")K (l)
K J(l.")K

where

C
8
^ ]

p!2
�1^

2
h
2
(p) p� ,

U (")^ ]
p �B
p!2

�1^
2
h
2
(p)�+1^ ]

p �B
p!2

ph
2
(p)

(p^1)2
,

and K (l)^ ]
p �l
p!2

�1^
1

h
2
(p) (p^1)2� .

(103) �
In all, we therefore �nd that

(104) :B (l)^
C
8

U (")K (l) l
K J(l,")K ^ O (log2 2l)

from (100) and (102).
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By way of (68) and (104) we return to J<
2
(z
1
,"; d ) and infer that

(105) J<
2
(z
1
,"; d )^C

8
U (") \

l"z1
l/0,modd

(z
1
^ l)2 K (l) l2

K J(l,")K ^ O � z4
1
log2 2z

1
d �

^ C
8

U (")J
7
(z
1
,"; d )^ O � z4

1
log2 2z

1
d � , say ,

the generating function for the sum J
7
(z
1
,"; d ) being the Dirichlet's series

\
l/0,modd

K (l)
K J(l,")K l s ^

1
d s �1^ 1

2s� ]
p �d

K (p) �1^ 1
ps�+1 ]

p �B
p!2

�1^ 1
ps�+1

^ ]
p�B
p!2

�1^
K (p)

ps �1^ 1
ps�+1�

^
K (d ) f (s)

d s
]
p�B
p!2

�1^
1
ps

JK (p)^1K�
(106) ^

1
d s

K (d ) f (s) GB (s) , say ,

where (103) shews that GB (s) represents an absolutely bounded regular function for p~^
3
2
.

Hence, in the familiar way,

J
7
(z
1
,"; d )^ 2K (d )

c;i'
O

c+i'
f (s) GB (s)

zs;4
1

d s (s ^2) (s ^3)(s ^4)
ds

for c~1 in the �rst place, wherefore, bymoving the line of integration to p^^
5
4
, we obtain

(107) J
7
(z
1
,"; d )^

1
30 d

K (d ) GB (1) z5
1

^ O �d 54 z1141 � .
Thus, combining this with (105), we complete the second assessment by concluding that

(108) J<
2
(z
1
,"; d )^H (1)

1
(", d ) z5

1
^ O � z4

1
log2 2z

1
d �^ O �d 54 z1141 �

for a suitable function H (1)
1

(", d ).

9. Treatments of J
2
(z
1
,B) and J

1
(z,B)

To synthesize an e�ective formula for J<
2
(z
1
,"; d ) from those thus far obtained, we

�rst compare (98) and (99) with (108) for any given values of " and d and deduce that

H
1
(", d )^H (1)

1
(", d )
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by letting z
1
18. Thus, by part of the calculation that led from (107) to (108),

(109) H
1
(", d ) z5

1
^ C

8
U (")J

7
(z
1
,"; d )^ O �d 54 z1141 �

so that (98) and (99) yield

(110) J<
2
(z
1
,"; d )^ C

8
U (")J

7
(z
1
,"; d )^ H

2
(", d ) z4

1
log z

1
^ H

3
(", d ) z4

1

^ O �"Ed 1916;E z2381 �^ O �"Ed 118 ;E z1141 �^ O �"Ed +14 z721
e+A	log (z1;2)�

when g^
1
8
as before. Both this formula and its variant (108) being valid for 1~ z

1
~ z

not only when d ~ z
1
but even when d ~ z, an examination of H

2
(", d ) and H

3
(", d ) with

the aid of (99), (76), and (78) shews that the second and third explicit terms on the right
of (110) may be conveniently added to the right of (108) provided that the log2 2z

1
appear-

ing in the latter be replaced by zE. But it is easily con�rmed that

min �d 1916 z2381
^ d 118 z114 , z4

1
�d�^min �d 1916 z2381

, z4
1
�d� ,

where it is critical to the method that z4
1
�d only take the smaller value in a range of d com-

mencing at a value z18351
that is signi�cantly larger that z121

. In summary, therefore, we have
the formula

(111) J<
2
(z
1
,"; d )^C

8
U (")J

7
(z
1
, " ; d )^ H

2
(", d ) z4

1
log z

1
^ H

3
(", d ) z4

1

^ O �"E zEmin �d 1916 z2381
, z4
1
�d��^ O �"Ed+14 z721

e+A	log (z1;2)� .
Ere we continue our climb, it is appropriate to pause awhile to look back on our

recent route. The inadequacy of the �rst method in * 7 for larger values of d is actually
related to the estimation of J

6
(z,"F; d F) in (73), which notwithstanding initial impressions

actually contributes in all a term of signi�cant size to the expression being evaluated. To
best appreciate this e�ect we remark that, had we been working directly with J

1
(s,")

instead of with J
2
(s,"), the analysis of the counterpart of J

5
(z
2
,"F; s<

dD
) through a double

contour integral would have, inter alia, thrown up an explicit term containing �L (0, s<
dD
) �2,

the summation of which over s<
dD
would not involve cancellation because L (0, s<

dD
)^0 when

s<
dD
(^1)^1. But, as our procedure demonstrates, this apparently awkward donation to

the work can be accounted for by substituting C
8

U (")J
7
(z
1
,"; d ) for H

1
(", d ) z5

1
, which

action additionally means that di�iculties associated with the consequential summation
over d are circumvented by the use of (112) and (113) below.

In preparation for the evaluation of J
1
(z,"), we make a nominal change in the range

of summation over d (still square-free as in (70)) in (68) to give the equivalent represen-
tation of J

2
(z
1
,") as
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\
d~z

(d,2B):1

J<
2
(z
1
,"; d )

h
2
(d )

(z
1
~1; z~z

1
)

and then temporarily agree for clarity to let the symbol Oz ( f ) denote a quantity that is
O( f ) and that is independent of z. We then see from (111), (105), and (60) that

J
2
(z
1
,")^C

8
U(") \

l"z1
(z
1
^l)2 !B (l) K (l) l2

K J(l,")K ^ z4
1
log z

1
\
d~z

H
2
(", d )
h
2
(d )

^ z4
1
\
d~z

H
3
(", d )
h
2
(d )

^ \
d~z118 #35

Oz �"E z
238 ;E
1

d 1916
h
2
(d ) �^ \

d!z118 #35
Oz �"E z4;E1

dh
2
(d )�

^ \
d

Oz �"E z
721

e+	log (z1;2)

d 14h2 (d ) �^ O �"E z4;E1
\
d!z

1
dh

2
(d )�

^ O �"E z721 e+	log (z1;2) \
d!z

1

d 14 h2 (d )� ,
within which the remainder terms amount to

Oz �"E z122351 �^ Oz �"E z721 e+	log (z1;2)�^ O �"E z4;E1
z �^ O �"E z

721
e+	log (z1;2)

z14
�

^Oz �"E z721 e+	log (z1;2)�^ O �"E z
721

z14 � .
Hence

(112) J
2
(z
1
,")^C

8
U (") \

l"z1
(z
1
^ l)2 !B (l) K (l) l2

K J(l,")K
^ z4

1
H<
2
(z,") log z

1

^ z4
1

H<
3
(z,")^ O �"E z

721
z14 �^ Oz �"E z721 e+	log (z1;2)� , say .

Let us now insert this expression for J
2
(z
1
,") into the formula for J

1
(z,") given by

Lemma 3. The impact of the �rst term on the right side of (112) is clearly

(113) C
8

U (") \
l"z

(z^ l)2 !B (l) K (l)
K J(l,")K ^V

1
(z,") , say ,

while that of the other terms is
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z2 log z H<
2
(z,")^ z2H<

3
(z,")^6z H<

2
(z,")

z
O
1
log u d u^6 z H <

3
(z,")

z
O
1

d u

^12z2H<
2
(z,")

z
O
1

log u du
u

^12 z2H<
3
(z,")

z
O
1

d u
u

^ O �"E z32 e+AD	log (z;2)�^ O �"E z z
O
1

e+AD	log (u;2)

u12
d u�

^12z2
'
O
1

Oz �"E e+AD	log (u;2)u32 � d u ^ O �z2"E
'
O
z

e+AD	log (u;2)

u32
du�^ O �z74"E

'
O
1

d u

u32 �
^ 6z2 log2zH<

2
(z,")^ z2 log z J^5H<

2
(z,")^12H<

3
(z,")K

^ z2J6H<
2
(z,")^5H<

3
(z,")^ H<

4
(")K^ O �"E z32 e+AD	log (z;2)� , say ,

wherein

(114) H<
4
(")^ O("E) .

The only constituents in these formulae that are not in readiness for their use in formula
(64) for J(y) are the �rst two terms in the antepenultimate line, which when transformed
for z^y �" and combined with the following terms produce

(115) 6y2 log2y
H<
2
(y �",")
"2

^
y2 log y
"2

J^5H<
2
(y �",")^ 12H<

3
(y �",")

^12H<
2
( y �",") log"K^

y2
"2

J6H<
2
(y �",") log2"^5H<

2
(y �",") log"

^12H<
3
(y �",") log"^6H<

2
(y �",")^5H<

3
(y �",")^ H

4
(")K

^ O �"E y
32

"32
e+AD	log '(y#B);2(�

^ y2 log2y V
2
(y �",")^ y2 log y V

3
(y �",")^ y2V

4
(y �",")

^ O �"Ey
32

"32
e+AD	log (y#B;2)� , say .

Then, in anticipation of the estimation of J(y) that is to follow, we write

(116) W
i
(y)^ \

B~y

k (")"E �(") q (")
h
2
(")

V
i
(y �",")

in order to get the decomposition
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(117) J(y)^W
1
(y)^ y2 log2y W

2
(y)^ y2 log y W

3
(y)^ y2W

4
(y)

^ O � y32 \
B"y

1

"54
e+AD	log (y#B;2)�

^W
1
(y)^ y2 log2y W

2
(y)^ y2 log y W

3
(y)^ y2W

4
(y)^ O �y32 e+AD	log (y;2)�

that �ows from (65), (59), (66), and (115).

Finally, we should remark at once that the complication in the form of V
4
(y �",")

is not re�ected in the estimation of the corresponding sum W
4
(y), which can be quickly

dismissed and has little in�uence on the �nal outcome.

10. Estimation of J(y)

The summit is almost in sight because all information needed for our theorem will
be available once the sums W

i
(y) have been assessed.

Pointing (116) and (113) at the primary sum W
1
(y), we have

(118) W
1
(y)^ C

8
\

Bl"y
(y^ "l)2 k (")U (")E � (") q (")!B (l) K (l)

"h
2
(")K J(l,")K

^C
8
\
n"y

(y^n)2a
n
, say ,

in which, being seen to be multiplicative, the coe�icient a
n
is equal for an odd prime power

pA to

!(p)K (p)^
U (p) q (p)

ph
2
(p)

^ �1^
1
h
2
(p)� �1^

1
h
2
(p) (p^1)2�^ 1

(p^1)2 �1^
3
h
2
(p)

^
1
h2
2
(p)�

^1^
1

(p^1)2
^

1
h
2
(p)

^
2

h
2
(p) (p^1)2

^1^
1

(p ^1)2
^

p
(p^1)2

^
p

p^1

in virtue of (60). Since also a
n
^2 when n is a power 2A, the generating function of the

sum in (118) is

'
\
n:1

a
n

n s
^ �1^

2
2s �1^ 1

2s�+1� ]
p!2

�1^
p

(p^1) p s �1^ 1
ps�+1�

^ f (s) �1^
1
2s� �1^

1
2s�+1 ]

p
�1^

1
(p^1) ps�

^ f (s) f (s ^1) h (s)
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in the notation of the lemmata numbered 1 both here and in I. Hence, by following earlier
procedures as exempli�ed in the proof of the above-mentioned lemmata and by recalling
that h (0)^1, we �nd that

(119) W
1
(y)^

1
3

C
8
f (2) f (3)
f (6)

y3^ C
8
f (0) y2 log y

^ B
8

y2^ O �y32 e+AD	log (y;2)� ,
where B

8
is an absolute constant whose speci�c value is immaterial.

The evaluation of the remaining sums W
i
(y) has a di�erent origin from that of W

1
(y)

but still involves the use of multiplicative functions in such a manner that a single sum-
mation su�ices in each case. First, by (116), (115), and (99),

W
2
(y)^

1
2

C
7
f (0)M (0) \

dB~y

t
2
("d )? ("d, 0)k (")E � (") q (")!2(d )

"dh
2
("d )

^
1
2

C
7
f (0) M (0) \

n~y
a F
n
, say ,

the summand a F
n
being multiplicative and equal to

t
2
(n)? (n, 0)
nh

2
(n)

\
dB:n
k (")E � (") q (")!2(d ) .

Owing to (70), a F
n
is only non-zero when n is square-free and, by (60), (76), and (78), is

equal to

t
2
(p)? (p, 0)
ph

2
(p)

(!2(p)^q (p))^^
1

ph2
2
(p) �1^

1
ph

2
(p)�+1 �1^

1
h
2
(p)�+1

(120) ^^
1

p (p^2) h
1
(p)

when n is an odd prime p ; also a
2
^1. Hence

(121) W
2
(y)^

1
2

C
7
f (0)M (0)

'
\
n:1

a F
n

^ O � 1
y2�

^
1
2

C
7
f (0)M (0) (1^1) ]

p!2
�1^ 1

p (p^1) h
1
(p)�^ O � 1

y2�
^ f (0) ]

p!2

(p^2)
h
2
(p)

�
h
1
(p)
h
2
(p) �1^ 1

p � (p^1)
(p^2)

�
h
2
(p)
h
1
(p)

^ O � 1
y2�

^ f (0) ]
p!2

(p^1)2
ph

2
(p)

^ O � 1
y2�
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^C
8
f (0)^ O � 1

y2� ,
by the relation

p (p^2) h
1
(p)^1^ p (p^2) h

2
(p)^ p (p^2)^1^ p (p^1) h

2
(p)

and (76), (78), and (27).

Secondly, in considering W
3
(y), we are fain to identify the summand in the sum over

d that represents V
3
(y�","). Since this is seen to be

1
d

C
7
f (0)M (0)t

2
("d )? ("d, 0)!2 (d ) �^ 3

2
^ log 2^

f F(0)
f (0)

^
M F(0)
M (0)

^c�
^

1
d

C
7
f (0) M (0)t

2
("d )? ("d, 0)!2 (d ) �^log d"^

? F("d, 0)
? ("d, 0)

^ \
� �d

log�
!2 (�)�

by another referral to (115) and (99), we infer from (116) that

(122) W
3
(y)^ �^3

2
^ log 2^

f F(0)
f (0)

^
M F(0)
M (0)

^c� C
7
f (0)M (0) \

n~y
a F
n

^ C
7
f (0) M (0) \

n~y
a F
n �^log n ^

? F(n, 0)
? (n, 0) �

^ C
7
f (0) M (0) \

n~y

t
2
(n)? (n, 0)
nh

2
(n)

\
dB:n
k (")E � (") q (")!2(d ) \

� �d

log�
!2(�)

^ �^ 3
2

^ log 2^
f F(0)
f (0)

^
M F(0)
M (0)

^c� C
7
f (0) M (0) \

n~y
a F
n

^ C
7
f (0)M (0) \

n~y
a FF
n

^ C
7
f (0) M (0) \

n~y
a FFF
n

^W
5
(y)^W

6
(y)^W

7
(y) , say ,

where it is immediate that

(123) W
5
(y)^ �^3^2 log 2^2

f F(0)
f (0)

^2
M F(0)
m (0)

^2c� C
8
f (0)^ O � 1

y2�
from the calculation that gave (121).
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To treat the series contained in W
6
(y), delimit the range of summation to obtain

(124) \
n~y

a FF
n
^

'
\
n:1

a FF
n

^ O � log 2y
y2 �

and introduce the multiplicative factor

R (n, u)^ eu(+logn;KD(n,0)#K(n,0))

in order to evaluate the in�nite series as the derivative of

'
\
n:1

a F
n

R (n, u)^]
p
(1^ a F

p
R (p, u))

at u^0. Accordingly

'
\
n:1

a FF
n
^ � '

\
n:1

a F
n� \

p

a F
p
(^log p ^? F(p, 0) �? (p, 0))

1^ a F
p

^ � '
\
n:1

a F
n� �^1

2
log 2^ \

p!2

log p
p (p^1) h

2
(p) �^1^

1
h
1
(p)��

^ �^log 2^2 \
p!2

log p
p (p^1) h

2
(p)� ]

p!2

(p^1) h
2
(p)

(p^2) h
1
(p)

and

(125) W
6
(y)^ �^log2^2 \

p!2

log p
p (p^1) h

2
(p)� C

8
f (0)^ O � log 2y

y2 � ,
whither we are led in turn by (124), (76), and (120).

The estimation of W
7
(y) is similar to that of W

6
(y) save that we avail ourselves of

the multiplicative function

e u �\
p �d

log� �!2 (�)�

to take account of the additive factor appearing in a FFF
n
. Suppressing therefore the details

of the calculation in this instance, we report that

W
7
(y)^ �2 \

p!2

log p
p (p^1)� C

8
f (0)^ O � log 2y

y2 �
^ �^log 2^2\

p

log p
p (p^1)� C

8
f (0)^ O � log 2y

y2 � ,

H o o l e y, On the Barban-Davenport-Halberstam theorem: VIII 43



which equation together with (122), (123), and (125) allows us to conclude that

(126) W
3
(y)^ �^3^2

f F(0)
f (0)

^2c^2\
p

log p
p (p^1)� C

8
f (0)^ O � log 2y

y2 �
because

M F(0)
M (0)

^ \
p!2

�^ log p
h
1
(p)

^
log p
p^1�^^ \

p!2

log p
p (p^1) h

1
(p)

by (76).

As for the remaining constituent W
4
(y) in (117), it is evident from (115) and (114)

that the above methods yield

(127) W
4
(y)^B

9
^ O � y E

y2�
for some absolute constant B

9
.

The required formula forJ(y) now follows from (117), (119), (121), (126), and (127),
which yield

(128) J(y)^
1
3

C
8
f (2) f (3)
f (6)

y3^
1
2

C
8

y2 log2y

^ C
8

y2 log y �1^ f F(0)f (0) ^c^\
p

log p
p (p^1)�^ B

10
y2^ O �y32 e+AD	log (y;2)�

after the value ^
1
2
for f (0) has been inserted into the estimates.

11. The �nal theorem

The going gets easier as we approach the summit since all we now have to do is to
gather together the estimates already found.

First, since

C
5

C
6

C
8
^ ]

p!2
�1^ 1

(p^1)2� �1^ 1
p (p^2)� (p^1)2

h
2
(p) p

^ ]
p!2

p (p^2)
(p^1)2

�
h
2
(p)

p^2
�
(p^1)2
h
2
(p) p

^1

by (54), (60), and (103), we infer from (63) and (128) that

J
4
(x ; Q)^

1
6
f (2) f (3)
f (6)

x3
Q

^
1
4

x2 log2
x
Q

^
1
2 �1^ f F(0)f (0) ^c^\

p

log p
p (p^1)� x2 log

x
Q

^ B
10

x2^ O �Q12 x32 e+AD	log '(x#Q);2(�^ O � x2
logAx � ,
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wherefore we gain

S<
4
(x;Q, Q

1
)^

1
6
f (2) f (3)
f (6)

x3 � 1
Q
1
^

1
Q�^1

2
x2 logx log

Q
Q
1
^

1
4

x2 (log2Q
1
^log2Q)

^
1
2 �1^ f F(0)f (0) ^c^\

p

log p
p (p^1)� x2 log

Q
Q
1

^ O �Q12x32 e+AD	log '(x#Q);2(�^ O � x2
logAx�

by (20). Hence, combining this with (17) and (30) in (15), we have

S<
1
(x;Q, Q

1
)^

1
6
f (2) f (3)
f (6)

x3 � 1
Q
1
^

1
Q�^3 � f F(0)f (0) ^c^ \

p

log p
p (p^1)� x2 log

Q
Q
1

^
3
2

x2 (log2Q
1
^log2Q)^

1
f (2)

Q x log2x ^ O �Qx log x log2
2x
Q �

^ O �Q12x32 e+AD	log '(x#Q);2(�^ O � x2
logA x� ,

which equation partial summation transforms into

S
1
(x; Q, Q

1
)^
f (2) f (3)
f (6)

x3 log
Q

Q
1
^3 � f F(0)f (0) ^c^ \

p

log p
p (p^1)� x2 (Q^Q

1
)

^3x2 (Q logQ^Q^Q
1
logQ

1
^ Q

1
)^

1
2f (2)

(Q2^Q2
1
) x log2x

^ O �x logx �Q2 log3
2x
Q

^ Q2
1
log3

2x
Q
1
��^ O �Q32x32 e+AD	log '(x#Q);2(�^ O � x3

logA x�
^
f (2) f (3)
f (6)

x3 log
Q

Q
1

^3Qx2 log Q^3 �1^
f F(0)
f (0)

^c^ \
p

log p
p (p^1)�Qx2

^
1

2f (2)
Q2x log2x ^ O �Q2x logx log2

2x
Q �

^ O �Q32x32 e+AD	log '(x#Q);2(�^ O � x3
logA x�

because of (3) and (5).

This, (12), and (10) then yield the estimate

S (x,Q)^
1

2f (2)
Q2x log2x ^ O �Q2x log x log2

2x
Q �

^ O �Q32x32 e+AD	log'(x#Q);2(�^ O � x3
logAx�

that we need.
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At last we have the theorems we sought. First there is

Theorem 1. Let

S (x,Q)^ \
k~Q
� (k) \

0"a~k
(a,k):1

E3 (x; a, k) ,

where E (x; a, k) is de�ned in the Introduction. Then, as x18,

S (x,Q)^ o �Q32x32 log32x�^ O � x3
logAx�

when Q^o (x � logx).

We also have

Theorem 2. If x � logx ~ Q ~ x, then

S (x,Q)^
1

2f (2)
Q2x log2x ^ O �Q2x logx log2

2x
Q � .

Noting the o-term in Theorem 1 can be improved when Q~x � log4;Ex, we end by
remarking on the linkage between these results and those in VII.
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