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This paper provides an asymptotic estimate for the expected number of real zeros of a
random algebraic polynomial a0 + a1x + a2x2 + ···+ an−1xn−1. The coefficients aj ( j =
0,1,2, . . . ,n− 1) are assumed to be independent normal random variables with mean zero.
For integers m and k = O(logn)2 the variances of the coefficients are assumed to have

nonidentical value var(aj) =
(
k−1
j−ik
)

, where n = k ·m and i = 0,1,2, . . . ,m− 1. Previous

results are mainly for identically distributed coefficients or when var(aj)=
(n
j
)
. We show

that the latter is a special case of our general theorem.

Copyright © 2006 A. Nezakati and K. Farahmand. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Let (Ω,Pr,�) be a fixed probability space and

Pn(x)=
n−1∑

j=0

ajx
j , (1.1)

where for ω ∈Ω, aj(ω) ≡ aj , j = 0,1,2, . . . ,n− 1, is a sequence of random variables de-
fined on Ω. Denote Nn(a,b) as the number of real zeros of Pn(x) in the interval (a,b).
One way to determine the mathematical behavior of Pn(x) is by looking at ENn(a,b), its
expected number of real zeros. This has been achieved for many forms of Pn(x) and vari-
eties of assumptions for the distributions of aj ’s. However, the majority of results assume
identical distributions for the coefficients, albeit, ENn is now known for most classes of
distributions, see for example Ibragimov and Maslova [9] or Farahmand [7] and its ref-
erences. Recently, in an interesting work Edelman and Kostlan [6] introduced a case of
nonidentical coefficients in which var(aj) =

(n
j
)
, j = 0,1,2, . . . ,n− 1. Indeed, the above
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case is also motivated by several physical applications which are studied, for example, in
Ramponi [11], Bleher and Di [2, 3], Bogomolny et al. [4, 5], and Aldous and Fyodorov
[1]. There have been further works to study the mathematical behavior of ENn of which
the most recent is Farahmand and Nezakati [8].

The special feature of choosing the above assumptions for the var(aj)’s, indeed beside
physical applications mentioned above, is the significant increase to ENn(−∞,∞). In fact
this expected number increases from (2/π) logn for the case of identical normal standard
to
√
n for the case when aj(ω) is normal with mean zero and variance

(n
j
)
. This assump-

tion for the variances of the coefficients introduces a new class of polynomials in which
there are more zeros than algebraic polynomials with identical variances and less than
random trigonometric polynomials defined as

∑n−1
j=0 aj cos jθ. The expected number of

real zeros of the latter polynomial is ENn(0,2π) ∼ n/
√

3. Indeed, these results show that
the oscillatory behavior of the above random polynomials has the least number of oscilla-
tions for the algebraic with identical coefficients case and most for the trigonometric case.
Our case of random algebraic polynomial with nonidentical coefficients has a number of
oscillations between these two extreme cases. Therefore, it is natural to ask whether or
not for other cases of nonidentical variances with binomial elements, the latter increases
in ENn remain stainable. To this end we prove the following theorem.

Theorem 1.1. For random algebraic polynomial Pn(x), let n be separated into two multi-
pliers such that n = k ·m, where k = f (n) is an integer and increasing function of n, such
that f (n) = O(logn)2. The random variables aj , j = 0,1,2, . . . ,n− 1 are normally distrib-

uted with means zero and var(aj)=
( k−1
j−ik
)
, j = ik, ik+ 1, . . . , (i+ 1)k− 1, i= 0,1, . . . ,m− 1.

Then for sufficiently large n, the expected number of real zeros of Pn(x) is

ENn(−∞,∞) ∼

√
k− 1. (1.2)

2. Proof of theorem

For proof of the theorem we use an approach based on Kac’s [10] or Rice’s [12] results.
In this case for

A2 = var
(
Pn(x)

)
, B2 = var

(
P′n(x)

)
,

C = cov
(
Pn(x),P′n(x)

)
, Δ2 =A2B2−C2,

(2.1)

the expected number of real zeros is given by the Kac-Rice formula as

ENn(a,b)= 1
π

∫ b

a

Δ

A2
dx. (2.2)

In order to use (2.2) to obtain ENn(−∞,∞) we note that changing x to 1/x and x to −x
leaves the distribution of the coefficients of Pn(x) in (1.1) invariant. Hence the expected
number of real zeros in the interval (0,1) is asymptotically the same as in (1,∞), (−1,0),
and (−∞,−1). Therefore it suffices to give the result for ENn(0,1) only. To this end, we
present our calculations for any integer k. From the assumptions of Theorem 1.1 for the
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distributions of the coefficients of Pn(x), from (2.1) we can easily show that

A2 =
n−1∑

j=0

var
(
aj
)
x2 j , B2 =

n−1∑

j=0

var
(
aj
)
j2x2 j−2, C =

n−1∑

j=0

var
(
aj
)
jx2 j−1. (2.3)

Now similar to the method of Sambandham [13], let

H(x, y)=
n−1∑

j=0

var
(
aj
)
x j y j , (2.4)

then we can obtain

H(x, y)=
(
k− 1

0

)
+

(
k− 1

1

)
xy + ···+

(
k− 1
k− 1

)
(xy)k−1

+ (xy)k
[(

k− 1
0

)
+

(
k− 1

1

)
xy + ···+

(
k− 1
k− 1

)
(xy)k−1

]
+ ···

+ (xy)(m−1)k

[(
k− 1

0

)
+

(
k− 1

1

)
xy + ···+

(
k− 1
k− 1

)
(xy)k−1

]

= (1 + x2)k−1
[

1 + (xy)k + (xy)2k + ···+ (xy)(m−1)k
]

= 1− xnyn

1− xk yk
(1 + xy)k−1.

(2.5)

Therefore from (2.3)-(2.4) we can easily see that

A2 =H(x,x), B2 =
[
∂2H(x, y)
∂x∂y

]

y=x
, C =

[
∂H(x, y)

∂x

]

y=x
. (2.6)

Therefore it is an easy exercise to obtain the value of A2, B2, and C given in (2.3) as

A2 = 1− x2n

1− x2k

(
1 + x2)k−1

,

B2 =
[
k2x4k−2 + (n− k)2x2n+4k−2 +

(
2n2− 2nk− k2

)
x2n+2k−2

(
1− x2k

)3

+
k2x2k−2−n2x2n−2

(
1−x2k

)3

]
(
1+x2)k−1

+2(k−1)

[
(n−k)x2n+2k+kx2k−nx2n

(
1−x2k

)2

]
(
1+x2)k−2

+

[
(k− 1)

(
1 + kx2− x2

)(
1− x2n

)

1− x2k

]
(
1 + x2)k−3

,

C =
[

(n− k)x2n+2k−1 + kx2k−1−nx2n−1

(
1− x2k

)2

]
(
1 + x2)k−1

+

[
(k− 1)x

(
1− x2n

)

1− x2k

]
(
1 + x2)k−2

.

(2.7)
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Also from (2.1) and (2.7), for any integer k, we obtain

Δ2

A4
= k2x2k−2−n2x2n−2 + 2

(
n2− k2

)
x2n+2k−2 +

(
n2 + 2k2− 4nk

)
x2n+4k−2

(
1− x2k

)2(
1− x2n

)2

+
k2x4n+2k−2− 2(n− k)2x4n+4k−2

(
1− x2k

)2(
1− x2n

)2 +
k− 1(

1 + x2
)2 .

(2.8)

In order to continue the proof of Theorem 1.1, we first consider the interval (0,1− η),
where for

a= 1− loglogk10

logk
, we let η = k−a. (2.9)

In this interval, for sufficiently large n, we can easily show that

xk ≤ k−10, xn ≤ k−10m. (2.10)

Also note a→ 1 as n→∞. This is necessary to obtain the result later. Now from (2.8), we
have

Δ2

A4
∼

k− 1(
1 + x2

)2 . (2.11)

Therefore from (2.2), we can show that

ENn(0,1−η) ∼

1
π

∫ 1−η

0

√
k− 1

1 + x2
dx =

√
k− 1
π

arctan(1−η). (2.12)

Hence for sufficiently large n,

ENn(0,1−η) ∼

√
k− 1
4

. (2.13)

Now we assume 1−η≤ x ≤ 1− δ, where for

b = 1− loglogk1/2

logk
, we let δ = k−b. (2.14)

In this interval, for sufficiently large n, we can easily show that

x2k ≤ k−1, x2n ≤ k−m. (2.15)

Now from (2.8), we have

Δ

A2
∼

√√√√k2x2k−2 +
k− 1(

1 + x2
)2 ≤ B

√
k, (2.16)

where B is constant. Therefore, from (2.2), we can show that

ENn(1−η,1− δ)=O
(
k−1/2 logk

)
. (2.17)
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When 1− δ ≤ x ≤ 1− ε, where for

c = 1− loglogn10

logn
, we let ε = n−c. (2.18)

In this interval, for sufficiently large n, we can easily show that

kx2k ≥ 1, xn ≤ n−10. (2.19)

Now from (2.8), (2.14), and (2.18), we have

Δ

A2
∼

kxk−1

1− x2k

√√√√1 +
(k− 1)

(
1− x2k

)2

k2x2k−2
(
1 + x2

)2 ≤ C

[
kxk−1

1 + xk
+
kxk−1

1− xk

]
, (2.20)

where C is constant. Therefore, from (2.2), we can show that

ENn(1− δ,1− ε)≤ C

π

∫ 1−ε

1−δ

[
kxk−1

1 + xk
+
kxk−1

1− xk

]
dx = C

π

[
log

1 + xk

1− xk

]1−ε

1−δ
. (2.21)

Therefore, for sufficiently large n,

ENn(1− δ,1− ε)=O(logn). (2.22)

Finally, let 1− ε ≤ x ≤ 1, we know that always

Δ

A2
≤ n. (2.23)

Therefore, from (2.2) and (2.18), and for sufficiently large n, we also have,

ENn(1− ε,1)=O(logn). (2.24)

Hence from (2.13), (2.17), (2.22), and (2.24), we have the proof of Theorem 1.1.

Example 2.1. In Theorem 1.1, if k = n, then our Theorem 1.1 result is similar to that
obtained by Edelman and Kostlan [6].

Example 2.2. In random polynomials Pn(x) =∑n−1
j=0 ajx j , where n ∈ {i2; i = 1,2, . . .}, if

k =√n and conditions of Theorem 1.1 hold, then for sufficiently large n,

ENn(−∞,∞)=
√√

n− 1. (2.25)

Example 2.3. In random polynomials Pn(x)=∑n−1
j=0 ajx j , n∈ {i3; i= 1,2, . . .}, if k = n1/3

and conditions of Theorem 1.1 hold, then for sufficiently large n,

ENn(−∞,∞)=
√
n1/3− 1, (2.26)

and, if k = n2/3, then for sufficiently large n,

ENn(−∞,∞)=
√
n2/3− 1. (2.27)
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