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Many sets of numbers are alike in this respect: About 30% of the numbers begin
with a 1; about 18% begin with a 2; and so on down, until only about 4.6% of the
numbers begin with a 9. The first digit is as likely to be a 1 as it is to be a 5, 6,
7, 8, or 9 altogether. The numbers have always been in plain sight, but we don’t
see the forest for the trees.

“That the ten digits do not occur with equal frequency must be evident to
any one making much use of logarithmic tables, and noticing how much
faster the first pages wear out than the last ones.”

Simon Newcomb, 18811

“It has been observed that the first pages of a table of common logarithms
show more wear than do the last pages . . . ”

Frank Benford, 19382

“The fact that leading digits tend to be small is important to keep in
mind; it makes the most obvious techniques of ‘average error’ estimation
for floating-point calculations invalid.”

Donald E. Knuth, 19693

“The income tax agencies of several nations and several states, including
California, are using detection software based on Benford’s Law, as are
a score of large companies and accounting businesses.”

The New York Times, 19984
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Figure 1 shows the distributions of first digits for eight sets of numbers. For example,
the Fibonacci numbers F1 through F10 are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ;

and thus in Fig. 1(a) these contribute three counts to the 1s bin, two counts to each of the
2s, 3s, and 5s bins, and one count to the 8s bin. In each set in Fig. 1, about 30% of the
numbers begin with a 1 and about 5% begin with a 9. Each set follows a first-digits law
called Benford’s law, shown as a solid histogram in each panel. We discuss the examples
after introducing this law.
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Figure 1. A comparison of eight distributions of first digits with Benford’s law.
The error bars are plus or minus the square roots of counts per bin.
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Benford’s law
The first quotation at the beginning of this article is the first sentence of an 1881

paper, “Note on the Frequency of Use of the Different Digits in Natural Numbers,”1 by
Simon Newcomb, a mathematician and astronomer.5 The obvious inference from the worn
early pages of tables of logarithms (an observation unlikely in the era of calculators) is
that numbers that begin with a 1 or 2 occur more frequently in calculations than do those
that begin with an 8 or 9. After a brief argument (the paper is two short pages, and the
argument is neither obvious nor conclusive), Newcomb concludes:

“The law of probability of the occurrence of numbers is such that all mantissae of
their logarithms are equally probable.”
Here is what this means: We write (positive) numbers in the scientific form i.jk . . .×10n,

where the first digit i is one of 1 through 9. Then

i.jk . . . × 10n = 10m × 10n , (1)

where m is the mantissa, and 0.0 ≤ m < 1.0. (“Mantissa” has a different meaning in the
context of floating-point notation.) Then

log10(i.jk . . . × 10n) = m + n = n.m . (2)

Figure 2 shows mantissas, plotted linearly, and the corresponding numbers i.jk . . . Older
readers will be reminded of the C and D scales on slide rules. Newcomb’s claim is that
the distribution of i.jk . . . in many sets of numbers is (statistically) uniform along the line
in Fig. 2. More numbers start with i = 1 than with i = 9 because the segment of the line
between i = 1 and 2 is longer than the segment between 9 and 10.

0.0 0.2 0.4 0.6 0.8 1.0mantissa  m

1 2 3 5 7 9number  i.jk . . . 4 6 8 10

Figure 2. Mantissas, plotted on a linear scale, of the numbers 1 through 10.

According to Newcomb, the probabilities P (i) of the first digits i are

P (1) = log10 2 − log10 1
P (2) = log10 3 − log10 2

= · · ·
P (9) = log10 10 − log10 9

= log10 2/1
= log10 3/2

= log10 10/9

= 0.301
= 0.176

= 0.046 .

(3)

These are properly normalized, because the sum of the P (i) is log10 10 − log10 1 = 1. The
full set of first-digit probabilities is:

i = 1 2 3 4 5 6 7 8 9
P (i) % = 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6 .

(4)
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The first digit is equally likely to be in the intervals 1-to-2, 2-to-4, 3-to-6, 4-to-8, and 5-to-10.

This is the first-digit law. It is not called Newcomb’s law because his paper seems to
have gone largely unnoticed. Or perhaps his observation simply slipped into the folklore of
numbers, because a 1938 paper, “The Law of Anomalous Numbers,”2 by Frank Benford,
a physicist at General Electric, begins, without attribution, with the second quotation at
the beginning of this article. And Benford came to the same conclusion about first-digit
probabilities. In addition, however, Benford collected more than 20,000 numbers of various
sorts—populations, areas of rivers, specific heats, addresses, numbers in newspaper articles,
atomic and molecular weights, and other quantities. To varying degrees, the separate distri-
butions gave “experimental” support for the law, but the agreement was particularly good
when all the disparate distributions were summed together. Here are Benford’s summary
figures:

numbers (%) = 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7
±0.8 ±0.4 ±0.4 ±0.3 ±0.2 ±0.2 ±0.2 ±0.2 ±0.3

the law (%) = 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6 .
(5)

Benford’s paper did get noticed, and for those 20,000 numbers the law with some justice
carries his name.6

Benford’s law is usually stated, as above, in terms of the probabilities of first digits.
However, a probability can be given for any interval x1 to x2 in x ≡ i.jk . . . , where 1 ≤
x1 < x2 < 10. Then

P (x1 < x < x2) = log10 x2 − log10 x1 = log10(x2/x1) . (6)

Only the ratio x2/x1 matters.

The integrated probability P (x) that x = i.jk . . . lies between its lower limit 1 and X,
where 1 < X < 10, is, from Eq. (6),

P (< X) ≡ P (1 ≤ x < X) = log10 X . (7)

The differential probability dP (x) that x = i.jk . . . lies between x and x + dx is

dP (x) = ρ(x) dx =
1

loge 10
dx

x
= 0.4343

dx

x
, (8)

where ρ(x) = 0.4343/x is the probability density. The integral of Eq. 8 from 1 to X gives
Eq. 7. Figure 3 shows P (< X) versus X and ρ(x) versus x.

When Benford’s law applies, numbers between 1.0 and 1.1 are more probable than
those between 1.1 and 1.2, and so on. By adding the probabilities for the intervals 1.0–
1.1, 2.0–2.1, . . . , 9.0–9.1, one finds that the probability that the second digit, j, is a 0 (at
the second digit, 0 joins the other nine) is 12.0%, whereas the probability that it is a 9 is
8.5%: the second-digit probabilities are much more nearly the same than are the first-digit
probabilities. The probabilities for the third digits 0 through 9 are all close to 10%.
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Figure 3. The integrated probability P (< X) versus X (right scale); and the
probability density ρ(x) versus x (left scale).

The examples
Distributions of “artificial” numbers such as phone numbers and dates of the month of

course do not obey Benford’s law, but neither do many distributions of “natural” numbers.
A browse through tables in the Handbook of Chemistry and Physics yields a disappointingly
slim crop of Benford-like distributions. Nevertheless, as the examples in Fig. 1 show, many
distributions do agree at least approximately with the law.

Fibonacci numbers—The Fibonacci numbers Fn are defined by F0 = 0, F1 = 1, and
thereafter Fn+1 = Fn + Fn−1, n = 1, 2, . . . Figure 1(a) compares the distribution of first
digits of F1 through F500 with the Benford distribution.7 Since the whole set of numbers
is determined by the starting values 0 and 1 and a rule, this is not an ordinary statistical
distribution. Nevertheless, error bars, the square roots of the numbers of counts Ni, are
given to show how nearly perfectly the two distributions agree.

In contrast, the first digits of the prime numbers are much more evenly distributed
over 1 through 9.

County populations—Figure 1(b) shows the distribution of first digits of the pop-
ulations of the 3,140 counties and the like into which the United States is divided.8 The
usual χ2 sum over bins,

χ2 =
9∑

i=1

(
Ni − Bi√

Ni

)2

, (9)

where Ni and Bi are the numbers of counts and the Benford predictions, is 11.4, most
of it coming from the i = 5 bin. The confidence level, with eight degrees of freedom, is
c.l. = 18%.

In contrast, the first digits of the areas of the counties are not distributed according to
Benford’s law.

Genus lifetimes—Figure 1(c) shows the distribution of first digits of 17,796 (!) rel-
atively well-determined durations (in Myr) of marine-animal genera in Earth’s history.9
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(Genus is the grouping above species: canis includes dogs, wolves, etc.) The distribution is
qualitatively in accord with Benford, but the χ2 is 146. However, combining the i = 4 and 5
bins drops their contribution to the χ2 from 121 to one. This is too good to be false—some
of the “5s” must really be “4s.” A breakdown of counts shows that durations between 10
and 100 Myr fall smoothly, but those between 1 and 10 Myr vary erratically, with more
in the 5-Myr bin than in any other. An author of the database suggests a possible bias:
durations (especially short ones) in much of Earth’s history are poorly determined—and
five is a “rounder” number than four.9 Combining the i = 4 and 5 bins reduces the χ2 to 26
(c.l. = 0.05%). It is hard to know whether the data are at fault or the Benford distribution
is simply not quite appropriate here.

Meson branching fractions—A meson is a bound state of a quark and an antiquark.
The least massive mesons are the π+, π0, and π−, but there are scores of other, more massive
mesons. All the mesons are unstable, decaying to lighter particles. More mass means that
more decay modes are energetically possible. For example, the π+ decays 99.99% of the
time to µ+νµ, but the heaviest known mesons have hundreds of decay modes, for which
many but not nearly all the branching fractions have been measured. The Summary Tables
of the 2010 Review of Particle Physics10 give 1,755 measured meson branching fractions.
Figure 1(d) shows the distribution of first digits of these fractions, compared with Benford’s
distribution. The χ2 is 9.0 (c.l. = 34%).

Figure 1(e) shows the distribution of the 1,917 errors on the 1,755 measurements of
the meson branching fractions (some of the fractions have asymmetric errors, as in 5.7+0.3

−0.2

%). The sweep is clear, but the χ2 is 35, two-thirds of it coming from the i = 3 bin. We
return to this example later.

Figure 1(f) shows the distribution of 1,045 experimental upper limits on meson branch-
ing fractions from the Review. A limit measures a sensitivity of an experiment, not a
property of a particle. Nevertheless, the χ2 is 9.6 (c.l. = 29%).

Textbook answers—Figure 1(g) shows the distribution of first digits of 2,068 answers
to odd-numbered problems in a physics textbook.11 The χ2 is 18.7 (c.l. = 1.6%).

Near-Earth-asteroid characteristics—Figure 1(h) shows the distribution of first
digits of three characteristics for each of 285 large near-Earth-orbit asteroids: the estimated
diameter (in km), the estimated number of “dynamically distinct potential impacts” with
the Earth, and the sum of the probabilities for potential impacts.12 The χ2 is 4.3 (c.l. =
83%).

Why Benford? Models
The mathematical literature on Benford’s law is substantial. A 1976 paper, whose

“purpose is to review all the proposed explanations” of the law, gives 37 references.13 Nor
did that put an end to the matter. Here we shall be content to describe two mathematical
models and to mention two other models that lead to Benford’s distribution. In the next
section, we discuss the invariance properties of the distribution.

Breaking into parts—Figure 1(d) includes all the measured branching fractions of
all the established mesons. As noted earlier, light mesons contribute few fractions whereas
heavy mesons contribute many. To compare with Fig. 1(d), we make a model in which the
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branching fractions of a meson with n decay modes result from a purely statistical breakup,
like breaking a meter stick at n − 1 random places. Let the fractions be fj , with j = 1
through n, ordered as f1 < f2 < · · · < fn, where

∑
fj = 1. The expectation values of the

fractions are given in a remarkable expression:14

1
n

(
1
n

+
1

n − 1
+

1
n − 2

+ · · · + 1
1

)
. (10)

The expectation value of f1 is equal to the first term in the series, 1/n2; the expectation
value of f2 is the sum of the first two terms of the series; and so on, until the expectation
value of fn is the sum of all n terms. For n = 2, f1 = 0.25 and f2 = 0.75—a random
break in a meter stick is equally likely to be in the central half (giving f1 > 0.25) or in the
end quarters of the stick (f1 < 0.25). An example with n = 5 shows the structure of the
equations: 

f1

f2

f3

f4

f5

 =


1/5 0 0 0 0
1/5 1/4 0 0 0
1/5 1/4 1/3 0 0
1/5 1/4 1/3 1/2 0
1/5 1/4 1/3 1/2 1/1




1/5
1/5
1/5
1/5
1/5

 =


0.04000
0.09000
0.15667
0.25667
0.45667

 . (11)

The sum of the branching fractions is one; in fact, the sum of the elements in every column
is one.

Figure 4(a) shows the distribution of first digits of the branching fractions from this
statistical model, summed over all the values of n from 2 through 50—altogether 25×51−1 =
1274 fractions. This is a calculation, not data with errors, but the χ2 is 2.9. Figure 4(b)
shows the modeled distribution for a meson with 500 decay modes. The χ2 is 3.1.

The expectation values of fractions from a random breaking into parts—either
summed over many values of n or for large values of n—obey Benford’s law.
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Figure 4. The first-digit distributions for expectation values of fractions resulting
from random breaking of a meson or a meter stick: (a) summed over n = 2 through
50; (b) for n = 500. See Fig. 1(d).
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Sampling an exponential—Let y(x) = aerx represent the exponential growth (r > 0)
or decay (r < 0) of a quantity y as a function of x; y might be a population of particles or
the money in a savings account, and x might be time. Figure 5(a) shows, for a value r > 0,
a semilog plot of y(x) versus x. The plot is of course a straight line.

The solid horizontal line segment in Fig. 5(a) covers the range of x over which y
increases by 900% from 1 to 10. The base of the shaded triangle is the range of x over
which y increases by 100% from 1 to 2; the base covers 30.1% of the length of the horizontal
line segment. The base of the narrow shaded trapezoid is the range of x over which y
increases by 11% from 9 to 10; it covers only 4.6% of the horizontal segment. So if you pick
randomly a value of x along the horizontal line segment, the leading digit of y will be 1 or 9
with probabilities 30.1% and 4.6%—just Benford. All this of course repeats as y goes from
10 to 100, 100 to 1000, etc. So if you sample y(x) at random values of x, where the range
of x is such that the range of y(x) is some integral number of decades (or—the practical
case—the range of y(x) is so many decades that end effects are unimportant), you build up
the Benford distribution.

The values of y(x) = aerx, sampled at random values of x (over a large enough
range of x), obey Benford’s law.

y (x)y 
3(x)

y 
–1(x)

y (x)/2

y (x/2)

(b)

0.5

1

2

5

10

20

0 2 4 6 8

x

y 
(x

)

(a)

0 2 4 6 8

x

Figure 5. (a) The exponential y(x) = aerx, with a = 1/
√

5 and er = ϕ, the
golden ratio. The points are the Fibonacci numbers F1 through F10. (b) Several
transforms of y(x).

Values of y(x) = aerx at regular values of x, say at x = 0, x1, 2x1, . . . , are the terms
in a geometric series:

a
(
1 + erx1 + e2rx1 + e3rx1 + · · ·

)
= a

(
1 + b + b2 + b3 + · · ·

)
, (12)
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where b ≡ erx1 . The distribution of first digits of the terms of a geometric series will
obey Benford’s law as long as b is not a rational power of 10; but if, say, b = 107/29, then
each term in the series repeats, times 107, every 29 steps (but even the 29 first digits will
approximate the Benford distribution). However, the rational fractions are a “thin” subset
of the real numbers; and such mathematical fine points are usually irrelevant for real-world
data. (It requires some mathematics to show that the terms fill the mantissa uniformly.)

The values of a geometric series, for all but a thin set of values of b, obey Benford’s
law.

Example: In Fig. 5(a), y(x) = aerx is drawn with a = 1/
√

5 and b = er = ϕ, where ϕ
is the golden ratio: ϕ = (1 +

√
5)/2 = 1.61803 . . . The points are the Fibonacci numbers Fn

for n (or x) = 1 through 10. The line runs through all but the lowest points because the
Fn are given by rounding to the nearest integer the terms in a geometric series:15

1√
5

(
ϕ0 + ϕ1 + ϕ2 + ϕ3 + · · ·

)
. (13)

The terms are just the values of y(x) at x = 0, 1, 2, . . . The first three terms are 0.447, 0.724,
and 1.171, poor approximations to 0, 1, and 1; but already ϕ4/

√
5 = 3.065 (F4 = 3); and

ϕ10/
√

5 = 55.0036 (F10 = 55). See Fig. 1(a) again.

Example: The frequencies of the equal-tempered musical scale—12 steps to an octave,
each frequency b = 21/12 = 1.0595 . . . times higher than the previous one—are the terms of
a geometric series. Thirty percent of the frequencies begin with a one.

Two other models—One of Benford’s examples used the first 342 addresses in Amer-
ican Men of Science. If all streets are either nine or 99 blocks long, with addresses in the
first block being in the 100s, then the first-digit probabilities are all 11%. But any streets
shorter than nine or 99 blocks favor the lower first digits. There are many other examples
of numberings of finite length, such as of pages and footnotes.

Consider the list of numbers 1 through n. If a number is chosen randomly from the
list, what is the probability Pn(1) that it starts with a 1? That of course depends on n:
P5(1) = 20%, P17(1) = 47%, P35(1) = 31%, and so on. The probabilities slowly oscillate as
n increases, reaching lows of 11% when n = 9, 99, 999, . . . , and highs of over 50% when
n = 19, 199, . . . Now consider the ensemble of lists having all values of n. By repeatedly
“smoothing,” once can get an ensemble average for P (1) equal to 30.1%,16 but the process is
not unique.17 Surprisingly, the expression in Eq. 10 makes an appearance in the smoothing.

Another model that produces the Benford distribution—now claimed to be the most
fundamental model—involves the selection of random numbers from random distributions.18

To a greater or lesser extent, several of the distributions in Fig. 1 fall into this class: the
county populations; the meson branching fractions; certainly the textbook answers.

Why Benford? Invariances
A wide-ranging law of numbers can scarcely depend on having used British units, or

on having ten fingers. Mathematicians have shown that invariance of a distribution under a
change of scale or of base leads to Benford’s law. (These invariances were already recognized
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by Newcomb.) Here we merely discuss the invariance properties of a set of numbers that
obeys Benford’s law.

Figure 5(b) shows the same y(x) as in Fig. 5(a). It also shows:

y−1(x) =
1
a

e−rx ;
1
2

y(x) =
a

2
erx ; y(x/2) = aerx/2 ; y3 = a3e3rx .

The first of these is the inverse of y; the second and third are y and then x rescaled in
units twice as large as before; the fourth is y cubed. All four of these new functions
are exponentials—they all graph as straight lines—and therefore all four will, if sampled
regularly or randomly along x, give Benford’s distribution. At least as arising from an
exponential, the distribution is invariant under all these transformations of y(x).

String theory—Here are general proofs of the invariance of the Benford distribution
under the inversion of numbers and under a change of scale.

Mark the values of the numbers of a set along a long string using a logarithmic scale;
see Fig. 6(a). Fibonacci numbers (a few are shown as examples), populations, and the like,
would occupy the right (≥ 1) half of the string. Branching fractions and the like would
occupy the left half. Another set might scatter along the whole string. Wrap the marked
string, with 1 at the bottom, around a circle whose circumference equals the length of the
string between 1 and 10; see Fig. 6(b). If the marks on the string populate the circumference
of the circle uniformly, the set of numbers obeys Benford’s law.

0.1 0.2 0.5 1 2 5 10

(d) Rescaling shifts numbers the same distance on the string and through the same angle on the circle.

0.1 0.2 0.5 1 2 5 10

(a) Mark the numbers of a set along a string using a logarithmic scale.  

0.1 0.2 0.5 1 2 5 10

(c) Inverting reflects numbers across 1 on the string and across the vertical diameter on the circle.

. . . , 0.2,  2,  20,  . . .. . . , 0.5,  5,  50,  . . .

. . . , 0.1,  1,  10,  . . .

(b) Wrap the string 

around a circle 

whose circumference

is the length of the

string between

1 and 10.

Benford’s law

is satisfied if

the marks

populate the

circumference

uniformly. 

Figure 6. Proofs of inversion and scale invariance of a distribution that obeys
Benford’s law are reduced to symmetry operations on a circle. The points, for
illustration, are a few of the Fibonacci numbers.
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Now invert all the numbers of the set. A number 2 jumps to 0.5; a number 0.25 jumps
to 4, and so on; see Fig. 6(c). In each case, a number and its inverse are equidistant from the
center of the string (at 1). Thus an inversion of the whole set of numbers just reflects the set
about the center of the string; and wrapping the string around the circle just populates its
circumference the other way around from before. The original and inverted distributions on
the circle are related by a reflection across its vertical diameter. If the original distribution
of numbers populates the circle uniformly, then so does the inverted distribution.

Now, instead, rescale the numbers of the set—perhaps changing from British to SI
units. To be concrete, suppose we multiply each of the numbers of a set by s = 0.5, which is
the same as measuring whatever it is the numbers represent in units twice as large as before.
A number 1 goes to 0.5; a number 2 goes to 1; etc; see Fig. 6(d). Each multiplication by
0.5 shifts any point on the string by the same amount. Thus a rescaling of the whole set of
numbers just shifts the set uniformly along the string; and wrapping the string around the
circle amounts to rotating the original distribution through some angle around the circle.
For s = 0.5, this angle is | log10 0.5| = 30.1% of 360◦, or 108◦ in the clockwise direction.
If the original distribution populates the circle uniformly, then so also does the rescaled
distribution.

Scale changes are hardly relevant for distributions of numbers that are dimensionless,
such as the Fibonacci numbers, populations, and branching fractions. It is sometimes
said that Benford’s law only applies to sets whose numbers have dimensions. Five of the
distributions in Fig. 1 say otherwise.

To summarize: We would get the Benford distribution from the equal-tempered musical
notes whether we used the frequencies f , or their inverses 1/f , or their wavelengths λ = v/f ,
or measured the frequencies in cycles per year, or the wavelengths in Bohr radii.

Changing base—Inversion and scale invariance involve reflections or shifts of the
markings for numbers on the string. Base invariance involves keeping the marks in place
but changing the circumference of the circle we wrap the string around. Whereas invariance
under a change of base is known to lead to Benford’s law,13 a set of numbers in accord with
Benford’s law is not necessarily base invariant.

The simplest nontrivial change from decimal is to trinary (or ternary). The first few
Fibonacci numbers in trinary are

0, 1, 1, 2, 10, 12, 22, 111, . . . ,

but the marks on the string stay in place. And now we wrap the string around a circle whose
circumference equals the length of the string between (decimal) 1 and 3. This circumference
is only log10 3 = 47.7% that of the circle in Fig. 6(b). Instead of circling the circle at
(decimal) 10, 100, 1000, . . . , we now circle it at (decimal) 3, 9, 27, . . . The mark at 2 on
the circumference would be log3 2 = 63.1% of the way around the circle. If Benford’s law is
satisfied, about 63% of the numbers will begin with a 1, the rest with a 2.

If the numbers in a set cover only a few orders of magnitude, such as the county
populations, then the distribution cannot be invariant under every change of base. For
suppose we change to a base of 100 million; then the marks would not get around the
(large) circle even once. The mathematicians’ series and exponentials can run on forever;
data sets usually do not.
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Another (highly artificial) example is a set of numbers distributed uniformly between
1 and 10 on the logarithmic string. The marks would wrap a bit more than twice around
the trinary circle, giving too many 1s.

These counter-examples are, however, quibbles. Any set that obeys Benford’s law to
base 10 will almost certainly extend over several (decimal) orders of magnitude. If, within
statistics, it is not invariant under a change to base 3 or 8 or 16, it probably would not obey
the law for base 10 to begin with.

Applications
Benford’s law has been shown to describe a set of 477 alpha-decay nuclear half lives,19

and 3553 more general nuclear half lives.20 A search for “Benford’s law” in the Physical
Review family of journals finds five papers, all since 2000. For three of the papers, the law
is incidental, but for two it is central. The titles tell the applications: “Stochastic aspects
of one-dimensional discrete dynamical systems: Benford’s law,”21 and “Benford’s law and
complex atomic spectra.”22

An outlier bin or two in a Benford-like distribution can be a prompt to investigate.
The χ2 for Fig. 1(e), showing the errors on meson branching fractions, is 35, of which 23
comes from the i = 3 bin. This (it took me a long time to see) is because the Particle
Data Group rounds errors with first digits between 1.0 and 3.55 to two places, but rounds
errors between 3.55 and 9.9 to one place.10 Thus the i = 3 bin actually only includes errors
between 2.95 and 3.55, and the spillover continues to higher i bins. Properly binned, the
χ2 becomes 10.2 (c.l. = 25%).

When a distribution of numbers is known from past experience to obey Benford’s law,
then new samples of that distribution, from simulations or experiments or auditing, ought
also to obey the law. For example, a simulation of future behavior of a process or activity
that in the past has obeyed the law ought to produce results that also obey the law. This
has been called “Benford in, Benford out.”23 A failure in this respect is an indication of
trouble. A failure to know that data on tax returns, inventories, and the like, often obey
Benford’s law has got people into trouble with the Law; see the last quote at the start of
this article.

Which brings us to Mark Nigrini, whose 1992 Ph.D. thesis, “The Detection of Income
Tax Evasion through an Analysis of Digital Distributions,” and subsequent work, did much
to spur development of these just-mentioned applications. And he has found examples in
other areas: My Fig. 1(b) simply repeats for 2000 census data his analysis of 1990 census
data.24 Therefore, it is fitting to close with the remarkable Fig. 7, which uses U.S. Geological
Survey records of 457,440 annual stream flow rates (in ft3/s) measured at 17,822 distinct
sites in U.S. rivers and streams, at some sites for more than 100 years.25 The data are
numerous and accurate enough to present in 90 two-place bins, 1.0 though 9.9.

I first learned of Benford’s law from two popular articles.17,23 Any law that unexpect-
edly describes so many and such varied sets of numbers can be useful in understanding
those numbers. Figure 1(i) is an invitation to explore on your own.

I thank R. Rohde for getting me the first-digit counts of the marine-animal durations
and for comments on those counts. I thank J.D. Jackson for comments on the draft of this
paper.
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Figure 7. Benford’s law and U.S. Geological Survey stream flow rates (in ft3/s).
Redrawn from Ref. 25.
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