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Recently Conrey, Farmer and Zirnbauer [8, 9] conjectured formulas for the averages

over a family of ratios of products of shifted L-functions. Their L-functions Ratios

Conjecture predicts both the main and lower order terms for many problems, ranging

from n-level correlations and densities to mollifiers and moments to vanishing at the

central point. There are now many results showing agreement between the main terms

of number theory and random matrix theory; however, there are very few families

where the lower order terms are known. These terms often depend on subtle arithmetic

properties of the family, and provide a way to break the universality of behavior. The

L-functions Ratios Conjecture provides a powerful and tractable way to predict these

terms. We test a specific case here, that of the 1-level density for the symplectic family

of quadratic Dirichlet characters arising from even fundamental discriminants d ≤ X.

For test functions supported in (−1/3, 1/3) we calculate all the lower order terms up to

size O(X−1/2+ε) and observe perfect agreement with the conjecture (for test functions

supported in (−1, 1) we show agreement up to errors of size O(X−ε) for any ε). Thus

for this family and suitably restricted test functions, we completely verify the Ratios

Conjecture’s prediction for the 1-level density.
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1 Introduction

Montgomery’s [35] analysis of the pair correlation of zeros of ζ(s) revealed a striking

similarity to the behavior of eigenvalues of ensembles of random matrices. Since then,

this connection has been a tremendous predictive aid to researchers in number theory

in modeling the behavior of zeros and values of L-functions, ranging from spacings

between adjacent zeros [35, 19, 36, 37, 44] to moments of L-functions [5, 10]. Katz and

Sarnak [26, 27] conjectured that, in the limit as the conductors tend to infinity, the

behavior of the normalized zeros near the central point agree with the N → ∞ scaling

limit of the normalized eigenvalues near 1 of a subgroup of U(N). One way to test this

correspondence is through the n-level density of a family F of L-functions L(s, f ); we

concentrate on this statistic in this article. The n-level density is

Dn,F(φ) :=
1
|F|

∑
f∈F

∑
�1,...,�n
�i �=±�k

φ1

(
γf ,�1

log Qf

2π

)
· · ·φn

(
γf ,�n

log Qf

2π

)
, (1.1)

where the φi are even Schwartz test functions whose Fourier transforms have compact

support, 1
2 + iγf ,� runs through the nontrivial zeros of L(s, f ), and Qf is the analytic

conductor of f . As the φi are even Schwartz functions, most of the contribution to

Dn,F(φ) arises from the zeros near the central point; thus this statistic is well-suited to

investigating the low-lying zeros.

There are now many examples where the main term in number theory agrees

with the Katz–Sarnak conjectures (at least for suitably restricted test functions), such

as all Dirichlet characters, quadratic Dirichlet characters, L(s,ψ) with ψ a character of

the ideal class group of the imaginary quadratic field Q(
√

−D), families of elliptic curves,

weight k level N cuspidal newforms, symmetric powers of GL(2) L-functions, and certain

families of GL(4) and GL(6) L-functions (see [13, 16, 18, 20–22, 27, 32, 39–42, 47]).

For families of L-functions over function fields, the corresponding classical com-

pact group can be identified through the monodromy. While the situation is less clear

for L-functions over number fields, there has been some recent progress. Dueñez and

Miller [12] show that for sufficiently nice families and sufficiently small support, the

main term in the 1-level density is determined by the first and second moments of the

Satake parameters, and a symmetry constant (which identifies the corresponding clas-

sical compact group) may be associated to any nice family such that the symmetry con-

stant of the Rankin-Selberg convolution of two families is the product of the symmetry

constants.
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There are two avenues for further research. The first is to increase the support of

the test functions, which often leads to questions of arithmetic interest (see for example

Hypothesis S in [22]). Another is to identify lower order terms in the 1-level density,

which is the subject of this article. The main term in the 1-level density is independent of

the arithmetic of the family, which surfaces in the lower order terms. This is very similar

to the Central Limit Theorem. For nice densities the distribution of the normalized

sample mean converges to the standard normal. The main term is controlled by the first

two moments (the mean and the variance of the density) and the higher moments surface

in the rate of convergence. This is similar to our situation, where the universal main

terms arise from the first and second moments of the Satake parameters.

There are now several families where lower order terms have been isolated in

the 1-level density [16, 33, 34, 46]; see also [3], where the Hardy–Littlewood conjectures

are related to lower order terms in the pair correlation of zeros of ζ(s) (see for example

[1, 2, 7, 28] for more on lower terms of correlations of Riemann zeros). Recently Conrey,

Farmer and Zirnbauer [8, 9] formulated conjectures for the averages over families of L-

functions of ratios of products of shifted L-functions, such as

∑
d≤X

L
(

1
2 + α,χd

)
L
(

1
2 + γ,χd

) =
∑
d≤X

[
ζ(1 + 2α)

ζ(1 + α + γ)
AD(α; γ)

+

(
d
π

)−α Γ
(

1
4 −

α
2

)
Γ
(

1
4 +

α
2

) ζ(1 − 2α)
ζ(1 − α + γ)

AD(−α; γ)

]
+ O(X1/2+ε) (1.2)

(here d ranges over even fundamental discriminants, −1/4 < �(α) < 1/4, 1/ log X �
�(γ) < 1/4, and AD (we only give the definition for α = γ, as that is the only instance that

occurs in our applications) is defined in (1.4)). Their L-functions Ratios Conjecture arises

from using the approximate functional equation, integrating term by term, and retaining

only the diagonal pieces (which they then ‘complete’); they also assume uniformity in the

parameters so that the resulting expressions may be differentiated (this is an essential

ingredient for 1-level density calculations). It is worth noting the incredible detail of the

conjecture, predicting all terms down to O(X1/2+ε).

There are many difficult computations whose answers can easily be predicted

through applications of the L-functions Ratios Conjecture, ranging from n-level correla-

tions and densities to mollifiers and moments to vanishing at the central point (see [6]).

While these are not proofs, it is extremely useful for researchers to have a sense of what

the answer should be. One common difficulty in the subject is that often the number the-

ory and random matrix theory answers appear different at first, and much effort must be
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spent on combinatorics to prove agreement (see for example [17, 21, 42, 44]); the analysis

is significantly easier if one knows what the final answer should be. Further, the Ratios

Conjecture often suggest a more enlightening way to group terms (see for instance Re-

mark 1.4).

Our goal in this article is to test the predictions of the Ratios Conjecture for a spe-

cific family, that of quadratic Dirichlet characters. We let d be a fundamental discrimi-

nant. This means (see Section 5 of [11]) that either d is a square-free number congruent to

1 modulo 4, or d/4 is square-free and congruent to 2 or 3 modulo 4. If χd is the quadratic

character associated to the fundamental discriminant d, then if χd(−1) = 1 (resp., −1)

we say d is even (resp., odd). If d is a fundamental discriminant then it is even (resp.,

odd) if d > 0 (resp., d < 0). We concentrate on even fundamental discriminants below,

though with very few changes our arguments hold for odd discriminants (for example, if

d is odd there is an extra 1/2 in certain Gamma factors in the explicit formula).

For notational convenience we adopt the following conventions throughout the

article:

• Let X∗ denote the number of even fundamental discriminants at most X ; thus

X∗ = 3X/π2 + O(X1/2), and X/π2 + O(X1/2) of these have 4|d (see Lemma

B.1 for a proof).

• In any sum over d, d will range over even fundamental discriminants unless

otherwise specified.

The goal of these notes is to calculate the lower order terms (on the number

theory side) as much as possible, as unconditionally as possible, and then compare our

answer to the prediction from the L-functions Ratios Conjecture, given in the theorem

below.

THEOREM 1.1 (One-level density from the Ratios Conjecture [6]). Let g be an even

Schwartz test function such that ĝ has finite support. Let X∗ denote the number of even

fundamental discriminants at most X, and let d denote a typical even fundamental

discriminant. Assuming the Ratios Conjecture for
∑

d≤X L( 1
2 +α,χd)/L( 1

2 +γ,χd),we have

1
X∗

∑
d≤X

∑
γd

g

(
γd

log X
2π

)

=
1

X∗ log X

∫
∞

−∞

g(τ )
∑
d≤X

[
log

d
π

+
1
2

Γ ′

Γ

(
1
4

+
iπτ

log X

)
+

1
2

Γ ′

Γ

(
1
4

−
iπτ

log X

)]
dτ
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+
2

X∗ log X

∑
d≤X

∫
∞

−∞

g(τ )

ζ ′

ζ

(
1 +

4πiτ
log X

)
+ A ′

D

(
2πiτ
log X

;
2πiτ
log X

)

− e−2πiτ log(d/π)/ log X
Γ
(

1
4 −

πiτ
log X

)
Γ
(

1
4 +

πiτ
log X

) ζ

(
1 −

4πiτ
log X

)
AD

(
−

2πiτ
log X

;
2πiτ
log X

)dτ

+ O(X− 1
2 +ε), (1.3)

with

AD(−r, r) =
∏
p

(
1 −

1
(p + 1)p1−2r

−
1

p + 1

)
·
(

1 −
1
p

)−1

A ′
D(r; r) =

∑
p

log p
(p + 1)(p1+2r − 1)

. (1.4)

The above is

1
X∗

∑
d≤X

∑
γd

g

(
γd

log X
2π

)
=

∫
∞

−∞

g(x)
(

1 −
sin(2πx)

2πx

)
dx + O

(
1

log X

)
, (1.5)

which is the 1-level density for the scaling limit of USp(2N). If supp(ĝ) ⊂ (−1, 1), then

the integral of g(x) against − sin(2πx)/2πx is −g(0)/2.

If we assume the Riemann Hypothesis, for supp(ĝ) ⊂ (−σ,σ) ⊂ (−1, 1) we have

−2
X∗ log X

∑
d≤X

∫
∞

−∞

g(τ ) e−2πiτ log(d/π)
log X

Γ
(

1
4 −

πiτ
log X

)
Γ
(

1
4 +

πiτ
log X

) ζ

(
1−

4πiτ
log X

)
AD

(
−

2πiτ
log X

;
2πiτ
log X

)
dτ

= −
g(0)

2
+ O(X− 3

4 (1−σ)+ε); (1.6)

the error term may be absorbed into the O(X−1/2+ε) error in (1.3) if σ < 1/3. �

The conclusions of the above theorem are phenomenal, and demonstrate the

power of the Ratios Conjecture. Not only does its main term agree with the Katz–Sarnak

conjectures for arbitrary support, but it calculates the lower order terms up to size

O(X−1/2+ε). While Theorem 1.1 is conditional on the Ratios Conjecture, the following

theorem is not, and provides highly nontrivial support for the Ratios Conjecture.

THEOREM 1.2 (One-level density for quadratic Dirichlet characters). Let the notation be

as in Theorem 1.1, with supp(ĝ) ⊂ (−σ,σ).
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(1) Up to terms of size O(X−(1−σ)/2+ε), the 1-level density for the family of

quadratic Dirichlet characters with even fundamental discriminants at

most X agrees with (1.3) (the prediction from the Ratios Conjecture).

(2) If we instead consider the family {8d : 0 < d ≤ X,d an odd, positive square-

free fundamental discriminant}, then the 1-level density agrees with

the prediction from the Ratios Conjecture up to terms of size O(X−1/2 +

X−(1−
3
2 σ)+ε + X−

3
4 (1−σ)+ε). In particular, if σ < 1/3 then the number

theory calculation agrees with the Ratios Conjecture up to errors at

most O(X−1/2+ε). �

REMARK 1.3. The above theorem indicates that, at least for the family of quadratic

Dirichlet characters and suitably restricted test functions, the Ratios Conjecture is

predicting all lower order terms up to size O(X−1/2+ε). This is phenomenal agreement

between theory and conjecture. Previous investigations of lower order terms in 1-level

densities went as far as O(logN X) for some N; here we are getting square-root agreement,

and strong evidence in favor of the Ratios Conjecture.

REMARK 1.4 (Influence of zeros of ζ(s) on lower order terms). From the expansion in

(1.3) we see that one of the lower order terms (arising from the integral of g(τ ) against

ζ ′(1 + 4πiτ/ log X)/ζ(1 + 4πiτ/ log X)) in the 1-level density for the family of quadratic

Dirichlet characters is controlled by the nontrivial zeros of ζ(s). This phenomenon has

been noted by other researchers (Bogomolny, Conrey, Keating, Rubinstein, Snaith); see

[6, 3, 43] for more details, especially [43] for a plot of the influence of zeros of ζ(s) on

zeros of L-functions of quadratic Dirichlet characters.

The proof of Theorem 1.2 starts with the Explicit Formula, which relates sums

over zeros to sums over primes (for completeness a proof is given in Appendix A). For

convenience to researchers interested in odd fundamental discriminants, we state it in

more generality than we need.

THEOREM 1.5 (Explicit Formula for a family of Quadratic Dirichlet Characters). Let g be

an even Schwartz test function such that ĝ has finite support. For d a fundamental

discriminant let a(χd) = 0 if d is even (χd(−1) = 1) and 1 otherwise. Consider a family

F(X) of fundamental discriminants at most X in absolute value. We have

1
|F(X)|

∑
d∈F(X)

∑
γd

g

(
γd

log X
2π

)
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=
1

|F(X)| log X

∫
∞

−∞

g(τ )
∑

d∈F(X)

[
log

|d|

π
+

1
2

Γ ′

Γ

(
1
4

+
a(χd)

2
+

iπτ

log X

)

+
1
2

Γ ′

Γ

(
1
4

+
a(χd)

2
−

iπτ

log X

)]
dτ −

2
|F(X)|

∑
d∈F(X)

∞∑
k=1

∑
p

χd(p)k log p
pk/2 log X

ĝ

(
log pk

log X

)
.

(1.7)
�

As our family has only even fundamental discriminants, all a(χd) = 0. The terms

arising from the conductors (the log(|d|/π) and the Γ ′/Γ terms) agree with the Ratios

Conjecture. We are reduced to analyzing the sums of χd(p)k and showing they agree

with the remaining terms in the Ratios Conjecture. As our characters are quadratic, this

reduces to understanding sums of χd(p) and χd(p)2. We first analyze the terms from the

Ratios Conjecture in Section 2 and then we analyze the character sums in Section 3. We

proceed in this order as one of the main uses of the Ratios Conjecture is in predicting

simple forms of the answer; in particular, it suggests nonobvious simplifications of the

number theory sums.

2 Analysis of the Terms from the Ratios Conjecture.

We analyze the terms in the 1-level density from the Ratios Conjecture (Theorem 1.1). The

first piece (involving log(d/π) and Γ ′/Γ factors) is already matched with the terms in the

Explicit Formula arising from the conductors and Γ-factors in the functional equation.

In Section 3 we match the next two terms (the integral of g(τ ) against ζ ′/ζ and A ′
D)

to the contributions from the sum over χd(p)k for k even; we do this for test functions

with arbitrary support. The number theory is almost equal to this; the difference is the

presence of a factor −g(0)/2 from the even k terms, which we match to the remaining

piece from the Ratios Conjecture.

This remaining piece is the hardest to analyze. We denote it by

R(g; X) = −
2

X∗ log X

∑
d≤X

∫
∞

−∞

g(τ )e−2πiτ log(d/π)
log X

Γ
(

1
4 −

πiτ
log X

)
Γ
(

1
4 +

πiτ
log X

)
× ζ

(
1 −

4πiτ
log X

)
AD

(
−

2πiτ
log X

;
2πiτ
log X

)
dτ , (2.1)

with (see (1.4))

AD(−r, r) =
∏
p

(
1 −

1
(p + 1)p1−2r

−
1

p + 1

)
·
(

1 −
1
p

)−1

. (2.2)
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There is a contribution to R(g; X) from the pole of ζ(s). The other terms are at most

O(1/ log X); however, if the support of ĝ is sufficiently small then these terms contribute

significantly less.

LEMMA 2.1. Assume the Riemann Hypothesis. If supp(ĝ) ⊂ (−σ,σ) then

R(g; X) = −
g(0)

2
+ O(X−

3
4 (1−σ)+ε). (2.3)

In particular, if σ < 1/3 then R(g; X) = −
1
2g(0) + O(X−

1
2 +ε). �

REMARK 2.2. If we do not assume the Riemann Hypothesis we may prove a similar result.

The error term is replaced with O(X−(1−
θ
2 )(1−σ)+ε), where θ is the supremum of the real

parts of zeros of ζ(s). As θ ≤ 1, we may always bound the error by O(X−(1−σ)/2+ε).

Interestingly, this is the error we get in analyzing the number theory terms χ(p)k

with k odd by applying Jutila’s bound (see Section 3.2.1); we obtain a better bound of

O(X−(1− 3
2 σ)) by using Poisson summation to convert long character sums to shorter ones

(see Section 3.2.2).

REMARK 2.3. The proof of Lemma 2.1 follows from shifting contours and keeping track

of poles of ratios of Gamma and zeta functions. We can prove a related result with

significantly less work. Specifically, if for supp(ĝ) ⊂ (−1, 1) we are willing to accept error

terms of size O(log−N X) for any N then we may proceed as follows:

(1) modify Lemma B.2 to replace the d-sum with X∗e−2πi(1−
log π
log X )τ

(
1 −

2πiτ
log X

)−1
+

O(X1/2);

(2) use the decay properties of g to restrict the τ sum to |τ | ≤ log X and then

Taylor expand everything but g, which gives a small error term and

∫
|τ |≤log X

g(τ )
N∑

n=−1

an

logn X
(2πiτ )ne−2πi(1−

log π
log X )τ dτ

=

N∑
n=−1

an

logn X

∫
|τ |≤log X

(2πiτ )ng(τ )e−2πi(1−
log π
log X )τ dτ ; (2.4)

(3) use the decay properties of g to extend the τ -integral to all of R (it is

essential here that N is fixed and finite!) and note that for n ≥ 0 the above

is the Fourier transform of g(n) (the nth derivative of g) at 1−
π

log X , and this

is zero if supp(ĝ) ⊂ (−1, 1).
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We prove Lemma 2.1 in Section 2.1; this completes our analysis of the terms from

the Ratios Conjecture. We analyze the lower order term of size 1/ log X (present only if

supp(ĝ) �⊂ (−1, 1)) in Lemma 2.6 of Section 2.2. We explicitly calculate this contribution

because in many applications all that is required are the main and first lower order

terms. One example of this is that zeros at height T are modeled not by the N → ∞ scaling

limits of a classical compact group but by matrices of size N ∼ log(T/2π) [31, 32, 33]. In

fact, even better agreement is obtained by changing N slightly due to the first lower order

term (see [4, 14]).

2.1 Analysis of R(g; X)

Before proving Lemma 2.1 we collect several useful facts.

LEMMA 2.4. In all statements below r = 2πiτ/ log X and supp(ĝ) ⊂ (−σ,σ) ⊂ (−1, 1).

(1) AD(−r, r) = ζ(2)/ζ(2 − 2r).

(2) If |r| ≥ ε then |ζ(−3 − 2r)/ζ(−2 − 2r)| �ε (1 + |r|).

(3) For w ≥ 0, g
(
τ − iw log X

2π

)
� Xσw

(
τ 2 + (w log X

2π )2
)−B

for any B ≥ 0.

(4) For 0 < a < b we have |Γ(a ± iy)/Γ(b ± iy)| = Oa,b(1). �

PROOF. (1): From simple algebra, as we may rewrite each factor as

p
p + 1

(
1 −

1
p2−2r

)
p

p − 1
=

(
1 −

1
p2

)−1(
1 −

1
p2−2r

)
. (2.5)

(2): By the functional equations of the Gamma and zeta functions Γ(s/2)π−s/2ζ(s)

= Γ((1 − s)/2)π−(1−s)/2ζ(1 − s) and Γ(1 + x) = xΓ(x) gives

ζ(−3 − 2r)
ζ(−2 − 2r)

=
Γ(1 − (−1 − r))π−2−rΓ(−1 − r)π1+rζ(4 + 2r)

Γ(− 3
2 − r)π

3
2 +rΓ(1 − (− 3

2 − r))( 3
2 + r)−1π−

3
2 +rζ(3 + 2r)

. (2.6)

Using

Γ(x)Γ(1 − x) = π/ sin πx = 2πi/(eiπx
− e−iπx), (2.7)

we see the ratio of the Gamma factors have the same growth as |r| → ∞ (if r = 0 then

there is a pole from the zero of ζ(s) at s = −2), and the two zeta functions are bounded

away from 0 and infinity.
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(3): As g(τ ) =
∫

ĝ(ξ)e2πiξτdξ, we have

g(τ − iy) =

∫
∞

−∞

ĝ(ξ)e2πi(τ−iy)ξdξ

=

∫
∞

−∞

ĝ(2n)(ξ)(2πi(τ − iy))−ne2πi(τ−iy)ξdξ

� e2πyσ(τ − iy))−2n
; (2.8)

the claim follows by taking y = (w log X)/2π.

(4): As |Γ(x − iy)| = |Γ(x + iy)|, we may assume all signs are positive. The claim

follows from the definition of the Beta function:

Γ(a + iy)Γ(b − a)
Γ(b + iy)

=

∫ 1

0
ta+iy−1(1 + t)b−a−1

= Oa,b(1); (2.9)

see [15] for additional estimates of the size of ratios of Gamma functions. �

PROOF OF LEMMA 2.1. By Lemma 2.4 we may replace AD(−2πiτ/ log X, 2πiτ/ log X) with

ζ(2)/ζ(2−4πiτ/ log X). We replace τ with τ − iw log X
2π with w = 0 (we will shift the contour

in a moment). Thus

R(g; X) = −
2

X∗ log X

∑
d≤X

∫
∞

−∞

g

(
τ − iw

log X
2π

)
e−2πi(τ−iw log X

2π ) log(d/π)
log X

×
Γ

(
1
4 −

w
2 −

πiτ
log X

)
Γ
(

1
4 +

w
2 +

πiτ
log X

) ζ(2)ζ
(

1 − w −
4πiτ
log X

)
ζ
(

2 − 2w −
4πiτ
log X

) dτ . (2.10)

We now shift the contour to w = 2. There are two different residue contributions as we

shift (remember we are assuming the Riemann Hypothesis, so that if ζ(ρ) = 0 then either

ρ =
1
2 + iγ for some γ ∈ R or ρ is a negative even integer), arising from

• the pole of ζ
(

1 − w −
4πiτ
log X

)
at w = τ = 0;

• the zeros of ζ
(

2 − 2w −
4πiτ
log X

)
when w = 3/4 and τ = γ log X

4π

(while potentially there is a residue from the pole of Γ

(
1
4 −

w
2 −

πiτ
log X

)
when w = 1/2 and

τ = 0, this is canceled by the pole of ζ
(

2 − 2w −
4πiτ
log X

)
in the denominator).

We claim the contribution from the pole of ζ
(

1 − w −
4πiτ
log X

)
at w = τ = 0 is

−g(0)/2. As w = τ = 0, the d-sum is just X∗. As the pole of ζ(s) is 1/(s−1), since s = 1−
4πiτ
log X

the 1/τ term from the zeta function has coefficient −
log X
4πi . We lose the factor of 1/2πi when

we apply the residue theorem, there is a minus sign outside the integral and another from
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the direction we integrate (we replace the integral from −ε to ε with a semicircle oriented

clockwise; this gives us a minus sign as well as a factor of 1/2 since we only have half the

contour), and everything else evaluated at τ = 0 is g(0).

We now analyze the contribution from the zeros of ζ(s) as we shift w to 2. Thus

w = 3/2 and we sum over τ = γ log X
4π with ζ( 1

2 + iγ) = 0. We use Lemma B.2 (with

z = τ − iw log X
2π ) to replace the d-sum with

X∗e−2πi(1−
log π
log X )τ

(
1
4

−
2πiτ
log X

)−1

X−
3
4 X

2 log π
log X + O(log X). (2.11)

The contribution from the O(log X) term is dwarfed by the main term (which is of size

X1/4+ε). From (3) of Lemma 2.4 we have

g

(
γ

log X
4π

− i
3
4

log X
2π

)
� X3σ/4(τ 2

+ 1)−B (2.12)

for any B > 0. From (4) of Lemma 2.4, we see that the ratio of the Gamma factors is

bounded by a power of |τ | (the reason it is a power is that we may need to shift a few

times so that the conditions are met; none of these factors will ever vanish as we are not

evaluating at integral arguments). Finally, the zeta function in the numerator is bounded

by |τ |2. Thus the contribution from the critical zeros of ζ(s) is bounded by

∑
γ

ζ( 1
2 +iγ)=0

1
X∗ log X

· X1/4 · X3σ/4

(γ2 + 1)B
· (|γ log X | + 1)n. (2.13)

For sufficiently large B the sum over γ will converge. This term is of size O(X− 3
4 (1−σ)+ε).

This error is O(X−ε) whenever σ < 1, and if σ < 1/3 then the error is at most O(X−1/2+ε).

The proof is completed by showing that the integral over w = 2 is negligible. We

use Lemma B.2 (with z = τ − i2 log X
2π ) to show the d-sum is O(X∗X−2+ε). Arguing as above

shows the integral is bounded by O(X−2+2σ+ε). (Note: some care is required, as there is

a pole when w = 2 coming from the trivial zero of ζ(s) at s = −2. The contribution from

the residue here is negligible; we could also adjust the contour to include a semicircle

around w = 2 and use the residue theorem.) �

REMARK 2.5. We sketch an alternate start of the proof of Lemma 2.1. One difficulty is

that R(g; X) is defined as an integral and there is a pole on the line of integration. We may
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write

ζ(s) = (s − 1)−1
+
(
ζ(s) − (s − 1)−1

)
. (2.14)

For us s = 1 −
4πiτ
log X , so the first factor is just −

log X
4πiτ . As g(τ ) is an even function, the

main term of the integral of this piece is

∫
∞

−∞

g(τ )
e−2πiτ

2πiτ
dτ =

∫
∞

−∞

g(τ )
(

e−2πiτ

4πiτ
−

e2πiτ

4πiτ

)
dτ

= −

∫
∞

−∞

g(τ )
sin(2πτ )

2πτ
dτ = −

g(0)
2

, (2.15)

where the last equality is a consequence of supp(ĝ) ⊂ (−1, 1). The other terms from the

(s − 1)−1 factor and the terms from the ζ(s) − (s − 1)−1 piece are analyzed in a similar

manner as the terms in the proof of Lemma 2.1.

2.2 Secondary term (of size 1/ log X) of R(g; X)

LEMMA 2.6. Let supp(ĝ) ⊂ (−σ,σ); we do not assume σ < 1. Then the 1/ log X term in the

expansion of R(g; X) is

1 −
Γ ′( 1

4 )
Γ ( 1

4 ) + 2 ζ ′(2)
ζ(2) − 2γ + 2 log π

log X
ĝ(1). (2.16)

It is important to note that this piece is only present if the support of ĝ exceeds (−1, 1)

(i.e. if σ > 1). �

PROOF. We sketch the determination of the main and secondary terms of R(g; X). We may

restrict the integrals to |τ | ≤ log1/4 X with negligible error; this will allow us to Taylor

expand certain expressions and maintain good control over the errors. As g is a Schwartz

function, for any B > 0 we have g(τ ) � (1 + τ 2)−4B. The ratio of the Gamma factors is

of absolute value 1, and AD(−r; r) = ζ(2)/ζ(2 − 2r) = O(1). Thus the contribution from

|τ | ≥ log1/4 X is bounded by

�
∫

|τ |≥log1/4 X
(1 + τ 2)−4B · max

(
log X

τ
,

τC

logC τ

)
dτ � (log X)−B (2.17)

for B sufficiently large.
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We use Lemma B.2 to evaluate the d-sum in (2.1) for |τ | ≤ log1/4 X ; the error term

is negligible and may be absorbed into the O(log−B X) error. We now Taylor expand the

three factors in (2.1). The main contribution comes from the pole of ζ ; the other pieces

contribute at the 1/ log X level.

We first expand the Gamma factors. We have

Γ
(

1
4 −

πiτ
log X

)
Γ
(

1
4 +

πiτ
log X

) = 1 −
Γ ′( 1

4 )
Γ( 1

4)
2πiτ
log X

+ O

(
τ 2

log2 X

)
. (2.18)

As AD(−r; r) = ζ(2)/ζ(2 − 2r),

AD

(
−

2πiτ
log X

;
2πiτ
log X

)
= 1 + 2

ζ ′(2)
ζ(2)

2πiτ
log X

+ O

(
τ 2

log2 X

)
. (2.19)

Finally we expand the ζ-piece. We have (see [11]) that

ζ(1 + iy) =
1
iy

+ γ + O(y), (2.20)

where γ is Euler’s constant. Thus

ζ

(
1 −

4πiτ
log X

)
= −

log X
4πiτ

+ γ + O

(
τ

log X

)
. (2.21)

We combine the Taylor expansions for the three pieces (the ratio of the Gamma

factors, the ζ-function and AD), and keep only the first two terms:

−
log X
4πiτ

+

[
1
2

Γ ′( 1
4)

Γ( 1
4 )

−
ζ ′(2)
ζ(2)

+ γ

]
+ O

(
τ

log X

)
. (2.22)

Finally, we Taylor expand the d-sum, which was evaluated in Lemma B.2. We may

ignore the error term there because it is O(X1/2). The main term is

X∗e−2πi(1−
log π
log X )τ

(
1 −

2πiτ
log X

)−1

= X∗e−2πi(1−
log π
log X )τ

(
1 +

2πiτ
log X

+ O

(
τ 2

log2 X

))
.

(2.23)
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Thus

R(g; X) =
−2

X∗ log X

∫ log X

− log1/4 X
g(τ ) · X∗e

−2πi
(

1−
log π

log1/4 X

)
τ
(

1 +
2πiτ
log X

+ O

(
τ 2

log2 X

))

×
[
−

log X
4πiτ

+

(
1
2

Γ ′( 1
4)

Γ( 1
4 )

−
ζ ′(2)
ζ(2)

+ γ

)
+ O

(
τ

log X

)]
dτ + O

(
1

logB X

)

=
2

log X

∫ log1/4 X

− log1/4 X
g(τ ) · e−2πi(1−

log π
log X )τ ·

[
log X
4πiτ

+

(
1
2

−
1
2

Γ ′( 1
4 )

Γ( 1
4)

+
ζ ′(2)
ζ(2)

−γ

)]
dτ

+ O

(
1

log5/4 X

)
. (2.24)

We may write

e−2πi(1−
log π
log X )τ

= e−2πiτ ·
(

1 +
2πiτ log π

log X
+ O

(
τ 2

log2 X

))
. (2.25)

The effect of this expansion is to change the 1/ log X term above by adding log π
2 .

Because g is a Schwartz function, we may extend the integration to all τ and

absorb the error into our error term. The main term is from (log X)/4πiτ ; it equals

−g(0)/2 (see the analysis in Section 2.1). The secondary term is easily evaluated, as it

is just the Fourier transform of g at 1. Thus

R(g; X) = −
g(0)

2
+

1 −
Γ ′( 1

4 )
Γ ( 1

4 ) + 2 ζ ′(2)
ζ(2) − 2γ + 2 log π

log X
ĝ(1) + O

(
1

log5/4 X

)
. (2.26)

�

3 Analysis of the Terms from Number Theory

We now prove Theorem 1.2. The starting point is the Explicit Formula (Theorem 1.5, with

each d an even fundamental discriminant). As the log(d/π) and the Γ ′/Γ terms already

appear in the expansion from the Ratios Conjecture (Theorem 1.1), we need only study

the sums of χd(p)k. The analysis splits depending on whether or not k is even. Set

Seven = −
2

X∗

∑
d≤X

∞∑
�=1

∑
p

χd(p)2 log p
p� log X

ĝ

(
2

log p�

log X

)

Sodd = −
2

X∗

∑
d≤X

∞∑
�=0

∑
p

χd(p) log p
p(2�+1)/2 log X

ĝ

(
log p2�+1

log X

)
. (3.1)
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On the basis of our analysis of the terms from the Ratios Conjecture, the proof of

Theorem 1.2 is completed by the following lemma.

LEMMA 3.1. Let supp(ĝ) ⊂ (−σ,σ) ⊂ (−1, 1). Then

Seven = −
g(0)

2
+

2
log X

∫
∞

−∞

g(τ )
ζ ′

ζ

(
1 +

4πiτ
log X

)
dτ

+
2

log X

∫
∞

−∞

g(τ )A ′
D

(
2πiτ
log X

;
2πiτ
log X

)
+ O(X−

1
2 +ε)

Sodd = O(X−
1−σ

2 log6 X). (3.2)

If instead we consider the family of characters χ8d for odd, positive square-free

d ∈ (0,X) (d a fundamental discriminant), then

Sodd = O(X−1/2+ε
+ X−(1−

3
2 σ)+ε). (3.3)

�

We prove Lemma 3.1 by analyzing Seven in Section 3.1 (in Lemmas 3.2 and 3.3) and

Sodd in Section 3.2 (in Lemmas 3.4, 3.5 and 3.6).

3.1 Contribution from k even

The contribution from k even from the Explicit Formula is

Seven = −
2

X∗

∑
d≤X

∞∑
�=1

∑
p

χd(p)2 log p
p� log X

ĝ

(
2

log p�

log X

)
, (3.4)

where
∑

d≤X 1 = X∗, the cardinality of our family. Each χd(p)2 = 1 except when p|d. We

replace χd(p)2 with 1, and subtract off the contribution from when p|d. We find

Seven = − 2
∞∑

�=1

∑
p

log p
p� log X

ĝ

(
2

log p�

log X

)

+
2

X∗

∑
d≤X

∞∑
�=1

∑
p|d

log p
p� log X

ĝ

(
2

log p�

log X

)
= Seven;1 + Seven;2. (3.5)

In the next subsections we prove the following lemmas, which completes the analysis of

the even k terms.



16 S. J. Miller

LEMMA 3.2. Notation as above,

Seven;1 = −
g(0)

2
+

2
log X

∫
∞

−∞

g(τ )
ζ ′

ζ

(
1 +

4πiτ
log X

)
dτ . (3.6)

�

LEMMA 3.3. Notation as above,

Seven;2 =
2

log X

∫
∞

−∞

g(τ )A ′
D

(
2πiτ
log X

;
2πiτ
log X

)
+ O(X−

1
2 +ε). (3.7)

�

3.1.1 Analysis of Seven;1.

PROOF OF LEMMA 3.2. We have

Seven;1 =
−2

log X

∞∑
n=1

Λ(n)
n

ĝ

(
2

log n
log X

)
. (3.8)

We use Perron’s formula to rewrite Seven;1 as a contour integral. For any ε > 0 set

I1 =
1

2πi

∫
�(z)=1+ε

g

(
(2z − 2) log A

4πi

) ∞∑
n=1

Λ(n)
nz

dz; (3.9)

we will later take A = X1/2. We write z = 1 + ε + iy and use (A.6) (replacing φ with g) to

write g(x + iy) in terms of the integral of ĝ(u). We have

I1 =

∞∑
n=1

Λ(n)
n1+ε

1
2πi

∫
∞

−∞

g

(
y log A

2π
−

iε log A
2π

)
e−iy log nidy

=

∞∑
n=1

Λ(n)
n1+ε

1
2π

∫
∞

−∞

[∫
∞

−∞

[
ĝ(u)eεu log A

]
e−2πi −y log A

2π udu

]
e−iy log ndy. (3.10)

We let hε(u) = ĝ(u)eεu log A. Note that hε is a smooth, compactly supported function and̂̂
hε(w) = hε(−w). Thus

I1 =

∞∑
n=1

Λ(n)
n1+ε

1
2π

∫
∞

−∞

ĥε

(
−

y log A
2π

)
e−iy log ndy

=

∞∑
n=1

Λ(n)
n1+ε

1
2π

∫
∞

−∞

ĥε(y)e−2πi −y log n
log A

2πdy
log A

=

∞∑
n=1

Λ(n)
n1+ε

1
log A

̂̂
hε

(
−

log n
log A

)
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=

∞∑
n=1

Λ(n)
n1+ε

1
log A

ĝ

(
log n
log A

)
eε log n

=
1

log A

∞∑
n=1

Λ(n)
n

ĝ

(
log n
log A

)
. (3.11)

By taking A = X1/2 we find

Seven;1 =
−2

log X

∞∑
n=1

Λ(n)
n

ĝ

(
2

log n
log X

)
= −I1. (3.12)

We now rewrite I1 by shifting contours; we will not pass any poles as we shift.

For each δ > 0 we consider the contour made up of three pieces: (1 − i∞, 1 − iδ], Cδ, and

[1−iδ, 1+i∞), where Cδ = {z : z−1 = δeiθ, θ ∈ [−π/2,π/2]} is the semicircle going counter-

clockwise from 1 − iδ to 1 + iδ. By Cauchy’s residue theorem, we may shift the contour in

I1 from �(z) = 1 + ε to the three curves above. Noting that
∑

n Λ(n)n−z = −ζ ′(z)/ζ(z), we

find that

I1 =
1

2πi

[∫ 1−iδ

1−i∞
+

∫
Cδ

+

∫ 1+i∞

1+iδ
g

(
(2z − 2) log A

4πi

)
−ζ ′(z)
ζ(z)

dz

]
. (3.13)

The integral over Cδ is easily evaluated. As ζ(s) has a pole at s = 1, it is just half the

residue of g
(

(2z−2) log A
4πi

)
(the minus sign in front of ζ ′(z)/ζ(z) cancels the minus sign from

the pole). Thus the Cδ piece is g(0)/2. We now take the limit as δ → 0:

I1 =
g(0)

2
− lim

δ→0

1
2π

[∫ −δ

−∞

+

∫
∞

δ

g

(
y log A

2π

)
ζ ′(1 + iy)
ζ(1 + iy)

dy

]
. (3.14)

As g is an even Schwartz function, the limit of the integral above is well-defined (for

large y this follows from the decay of g, while for small y it follows from the fact that

ζ ′(1 + iy)/ζ(1 + iy) has a simple pole at y = 0 and g is even). We again take A = X1/2, and

change variables to τ =
y log A

2π =
y log X

4π . Thus

I1 =
g(0)

2
−

2
log X

∫
∞

−∞

g(τ )
ζ ′

ζ

(
1 +

4πiτ
log X

)
dτ , (3.15)

which completes the proof of Lemma 3.2. �



18 S. J. Miller

3.1.2 Analysis of Seven;2.

PROOF OF LEMMA 3.3. Recall

Seven;2 =
2

X∗

∑
d≤X

∞∑
�=1

∑
p|d

log p
p� log X

ĝ

(
2

log p�

log X

)
. (3.16)

We may restrict the prime sum to p ≤ X1/2 at a cost of O(log log X/X). We sketch the proof

of this claim. Since ĝ has finite support, p ≤ Xσ and thus the p-sum is finite. Since d ≤ X

and p ≥ X1/2, there are at most 2 primes which divide a given d. Thus

2
X∗

∑
d≤X

∞∑
�=1

Xσ∑
p=X1/2

p|d

log p
p� log X

ĝ

(
2

log p�

log X

)
� 1

X∗

∞∑
�=1

Xσ∑
p=X1/2

1
p�

∑
d≤X
p|d

1

� 1
X∗

Xσ∑
p>X1/2

2
p

� log log X
X

. (3.17)

In Lemma B.1 we show that

X∗
=

3
π2

X + O(X1/2) (3.18)

and that for p ≤ X1/2 we have

∑
d≤X
p|d

1 =
X∗

p + 1
+ O(X1/2). (3.19)

Using these facts we may complete the analysis of Seven;2:

Seven;2 =
2

X∗

∑
d≤X

∞∑
�=1

∑
p≤X1/2

p|d

log p
p� log X

ĝ

(
2

log p�

log X

)
+ O

(
log log X

X

)

=
2

X∗

∞∑
�=1

∑
p≤X1/2

log p
p� log X

ĝ

(
2

log p�

log X

) ∑
d≤X, p|d

1 + O

(
log log X

X

)

= 2
∞∑

�=1

∑
p≤X1/2

log p
p� log X

· 1
p + 1

ĝ

(
2

log p�

log X

)

+ O

X1/2

X

∞∑
�=1

∑
p≤X1/2

1
p�

+
log log X

X


= 2

∞∑
�=1

∑
p≤X1/2

log p
p� log X

· 1
p + 1

ĝ

(
2

log p�

log X

)
+ O(X−

1
2 +ε). (3.20)
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We rewrite ĝ(2 log p�/ log X) by expanding the Fourier transform.

Seven;2 = 2
∞∑

�=1

∑
p≤X1/2

log p
(p + 1)p� log X

∫
∞

−∞

g(τ )e−2πiτ ·2 log p�/ log Xdτ + O(X− 1
2 +ε)

= 2
∑

p≤X1/2

log p
(p + 1) log X

∫
∞

−∞

g(τ )
∞∑

�=1

p−� · p−2πiτ ·2�/ log Xdτ + O(X−
1
2 +ε)

= 2
∑

p≤X1/2

log p
(p + 1) log X

∫
∞

−∞

g(τ )p−(1+2· 2πiτ
log X )
(

1 − p−(1+2· 2πiτ
log X )
)−1

dτ + O(X−
1
2 +ε).

(3.21)

We may extend the p-sum to be over all primes at a cost of O(X−1/2+ε); this is because

the summands are O(log p/p2) and g is Schwartz. Recalling the definition of A ′
D(r; r) in

(1.4), we see that the resulting p-sum is just A ′
D(2πiτ/ log X ; 2πiτ/ log X); this completes

the proof of Lemma 3.3. �

3.2 Contribution from k odd

As k is odd, χd(p)k = χd(p). Thus we must analyze the sum

Sodd = −
2

X∗

∑
d≤X

∞∑
�=0

∑
p

χd(p) log p
p(2�+1)/2 log X

ĝ

(
log p2�+1

log X

)
. (3.22)

If supp(ĝ) ⊂ (−1, 1), Rubinstein [42] showed (by applying Jutila’s bound [23–25] for

quadratic character sums) that if our family is all discriminants then Sodd = O(X−ε/2).

In his dissertation Gao [17] extended these results to show that the odd terms do not

contribute to the main term provided that supp(ĝ) ⊂ (−2, 2). His analysis proceeds

by using Poisson summation to convert long character sums to shorter ones. We shall

analyze Sodd using both methods: Jutila’s bound gives a self-contained presentation, but

a much weaker result; the Poisson summation approach gives a better bound but requires

a careful book-keeping of many of Gao’s lemmas (as well as an improvement of one of his

estimates).

3.2.1 Analyzing Sodd with Jutila’s bound.

LEMMA 3.4. Let supp(ĝ) ⊂ (−σ,σ). Then Sodd = O(X−
1−σ

2 log6 X). �
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PROOF. Jutila’s bound (see (3.4) of [25]) is

∑
1<n≤N

n nonsquare

∣∣∣∣∣∣
∑

0<d≤X
d fund. disc.

χd(n)

∣∣∣∣∣∣
2

� NX log10 N (3.23)

(note the d-sum is over even fundamental discriminants at most X). As 2�+1 is odd, p2�+1

is never a square. Thus Jutila’s bound gives

 ∞∑
�=0

∑
p(2�+1)/2≤Xσ

∣∣∣∣∣∣
∑
d≤X

χd(p)

∣∣∣∣∣∣
2


1/2

� X
1+σ

2 log5 X. (3.24)

Recall

Sodd = −
2

X∗

∞∑
�=0

∑
p

log p
p(2�+1)/2 log X

ĝ

(
log p2�+1

log X

)∑
d≤X

χd(p). (3.25)

We apply Cauchy–Schwartz, and find

|Sodd| ≤ 2
X∗

 ∞∑
�=0

∑
p2�+1≤Xσ

∣∣∣∣ log p
p(2�+1)/2 log X

ĝ

(
log p2�+1

log X

)∣∣∣∣2
1/2

×

 ∞∑
�=0

∑
p2�+1≤Xσ

∣∣∣∣∣∣
∑
d≤X

χd(p)

∣∣∣∣∣∣
2


1/2

� 2
X∗

(∑
n≤Xσ

1
n

)1/2

· X
1+σ

2 log5 X

� X−
1−σ

2 log6 X ; (3.26)

thus there is a power savings if σ < 1. �

3.2.2 Analyzing Sodd with Poisson summation. Gao analyzes the contribution from

Sodd by applying Poisson summation to the character sums. The computations are

simplified if the character χ2(n) =
(2

n

)
is not present. He therefore studies the family

of odd, positive square-free d (where d is a fundamental discriminant). His family is

{8d : X < d ≤ 2X, d an odd square − free fundamental discriminant}; (3.27)
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we discuss in Lemma 3.6 how to easily modify the arguments to handle the related family

with 0 < d ≤ X. The calculation of the terms from the Ratios Conjecture proceeds

similarly (the only modification is to X∗, which also leads to a trivial modification

of Lemma B.2 which does not change any terms larger than O(X−1/2+ε) if supp(ĝ) ⊂
(−1/3, 1/3)), as does the contribution from χ(p)k with k even. We are left with bounding

the contribution from Sodd. The following lemma shows that we can improve on the

estimate obtained by applying Jutila’s bound.

LEMMA 3.5. Let supp(ĝ) ⊂ (−σ,σ) ⊂ (−1, 1). Then for the family given in (3.27),

Sodd = O(X−
1
2 +ε + X−(1−

3
2 σ)+ε). In particular, if σ < 1/3 then Sodd = O(X−1/2+ε). �

PROOF. Gao is only concerned with main terms for the n-level density (for any n) for

all sums. As we only care about Sodd for the 1-level density, many of his terms are not

present. We highlight the arguments. We concentrate on the � = 0 term in (3.22) (the

other � � log X terms are handled similarly, and the finite support of ĝ implies that

Sodd(�) = 0 for � � log X):

Sodd = −
2

X∗

∑
d≤X

∞∑
�=0

∑
p

χd(p) log p
p(2�+1)/2 log X

ĝ

(
log p2�+1

log X

)
=

∞∑
�=0

Sodd(�). (3.28)

Let Y = Xσ, where supp(ĝ) ⊂ (−σ,σ). Our sum Sodd(0) is S(X,Y, ĝ) in Gao’s thesis:

S(X,Y, ĝ) =
∑

X<d<2X
(2,d)=1

µ(d)2
∑
p<Y

log p
√

p
χ8d(p)ĝ

(
log p
log X

)
. (3.29)

Let Φ be a smooth function supported on (1, 2) such that Φ(t) = 1 for t ∈ (1 +

U−1, 2 − U−1) and Φ(j)(t) �j Uj for all j ≥ 0. We show that S(X,Y, ĝ) is well approximated

by the smoothed sum S(X,Y, ĝ,Φ), where

S(X,Y, ĝ,Φ) =
∑

(d,2)=1

µ(d)2
∑
p<Y

log p
√

p
χ8d(p)ĝ

(
log p
log X

)
Φ

(
d
X

)
. (3.30)

To see this, note the difference between the two involved summing d ∈ (X,X + X/U) and

d ∈ (2X − X/U, 2X). We trivially bound the prime sum for each fixed d by log7 X (see

Proposition III.1 of [17]). As there are O(X/U) choices of d and Φ(d/X) � 1, we have

S(X,Y, ĝ) − S(X,Y, ĝ,Φ) � X log7 X
U

. (3.31)
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We will take U =
√

X. Thus upon dividing by X∗ � X (the cardinality of the

family), this difference is O(X−1/2+ε). The proof is completed by bounding S(X,Y, ĝ,Φ).

To analyze S(X,Y, ĝ,Φ), we write it as SM(X,Y, ĝ,Φ) + SR(X,Y, ĝ,Φ), with

SM(X,Y, ĝ,Φ) =
∑

(d,2)=1

MZ(d)
∑
p<Y

log p
√

p
χ8d(p)ĝ

(
log p
log X

)
Φ

(
d
X

)

SR(X,Y, ĝ,Φ) =
∑

(d,2)=1

RZ(d)
∑
p<Y

log p
√

p
χ8d(p)ĝ

(
log p
log X

)
Φ

(
d
X

)
, (3.32)

where

µ(d)2
= MZ(d) + RZ(d)

MZ(d) =
∑
�2|d
�≤Z

µ(�), RZ(d) =
∑
�2|d
�>Z

µ(�); (3.33)

here Z is a parameter to be chosen later, and SM(X,Y, ĝ,Φ) will be the main term (for a

general n-level density sum) and SR(X,Y, ĝ,Φ) the error term. In our situation, both will

be small.

In Lemma III.2 of [17], Gao proves that SR(X,Y, ĝ,Φ) � (X log3 X)/Z. We have not

divided any of our sums by the cardinality of the family (which is of size X). Thus for this

term to yield contributions of size X−1/2+ε, we need Z ≥ X1/2.

We now analyze SM(X,Y, ĝ,Φ). Applying Poisson summation we convert long

character sums to short ones. We need certain Gauss-type sums:

(
1 + i

2
+

(
−1
k

)
1 − i

2

)
Gm(k) =

∑
a mod k

(
a
k

)
e2πiam/k. (3.34)

For a Schwartz function F let

F̃(ξ) =
1 + i

2
F̂(ξ) +

1 − i
2

F̂(−ξ). (3.35)

Using Lemma 2.6 of [45], we have (see page 32 of [17])

SM(X,Y, ĝ,Φ) =
X
2

∑
2<p<Y

log p
p3/2

ĝ

(
log p
log X

)

×
∑
α≤Z

(α,2p)=1

µ(α)
α

∞∑
m=0

(−1)mGm(p)Φ̃
(

mX
2α2p

)
. (3.36)
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We follow the arguments in Chapter 3 of [17]. The m = 0 term is analyzed in Section 3.3

for the general n-level density calculations. It is zero if n is odd, and we do not need

to worry about this error term (thus we do not see the error terms of size X logn−1 X

or (X logn X)/Z which appear in his later estimates). In Section 3.4 Gao analyzes the

contributions from the nonsquare m in (3.36). In his notation, we have k = 1, k2 = 0,

k1 = 0, α1 = 1 and α0 = 0, and these terms’ contribution is � (U2Z
√

Y log7 X)/X

(remember we have not divided by the cardinality of the family, which is of order X).

This is too large for our purposes (we have seen that we must take U = Z =
√

X and

Y = Xσ). We perform a more careful analysis of these terms in Appendix C, and bound

these terms’ contribution by

UZ
√

Y log7 X
X

+
UZY3/2 log4 X

X
+

Z3U2Y7/2 log4 X
X4018−2ε

. (3.37)

Lastly, we must analyze the contribution from m a square in (3.36). From Lemma

III.3 of [17] we have that Gm(p) = 0 if p|m. If p |� m and m is a square, then Gm(p) =
√

p.

Arguing as in [17], we are left with

∑
p<Y

(p,2)=1

log p
p

ĝ

(
log p
log X

) ∑
α≤Z

(α,2p)=1

µ(α)
α2

[
∞∑

m=1

(−1)mΦ̃

(
m2X
2α2p

)
−

∞∑
m̃=1

(−1)m̃Φ̃

(
p2m̃2X
2α2p

)]
.

(3.38)

If we assume supp(ĝ) ⊂ (−1, 1), then arguing as on page 41 of [17] we find the m-sum

above is � α
√

p/X, which leads to a contribution �
√

Y/X log X log Z; the m̃-sum is

� α/
√

pX and is thus dominated by the contribution from the m-sum.

Collecting all our bounds, we see a careful book-keeping leads to smaller errors

than in Section 3.6 of [17] (this is because (1) many of the error terms only arise from

n-level density sums with n even, where there are main terms and (2) we did a more

careful analysis of some of the errors). We find that

S(X,Y, ĝ,Φ) � X log3 X
Z

+
UZ

√
Y log7 X
X

+
UZY3/2 log4 X

X
+

√
Y log X log Z√

X
.

(3.39)

We divide this by X∗ � X (the cardinality of the family). By choosing Z = X1/2, Y = Xσ

with σ < 1, and U =
√

X (remember we need such a large U to handle the error from

smoothing the d-sum, i.e. showing |S(X,Y, ĝ) − S(X,Y, ĝ,Φ)|/X � X−1/2+ε), we find

S(X,Y, ĝ,Φ)/X � X−1/2+ε
+ X−(1−

3
2 σ)+ε, (3.40)
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which yields

Sodd � X−1/2+ε
+ X−(1−

3
2 σ)+ε. (3.41)

Note that if σ < 1/3 then Sodd � X−1/2+ε. �

LEMMA 3.6. Let supp(ĝ) ⊂ (−σ,σ) ⊂ (−1, 1). Then for the family

{8d : 0 < d ≤ X, d an odd square-free fundamental discriminant} (3.42)

we have Sodd = O(X−1/2+ε + X−(1−
3
2 σ)+ε). In particular, if σ < 1/3 then Sodd = O(X−1/2+ε).

�

PROOF. As the calculation is standard, we merely sketch the argument. We write

(0,X] =

log2 X⋃
i=1

(
2X
2i+1

,
2X
2i

]
. (3.43)

Let Xi = X/2i. For each i, in Lemma 3.5 we replace most of the X’s with Xi, U with

U/
√

2i, Z with Z/
√

2i; the X’s we do not replace are the cardinality of the family (which

we divide by in the end) and the log X which occurs when we evaluate the test function ĝ

at log p/ log X. We do not change Y, which controls the bounds for the prime sum. As we

do not have any main terms, there is no loss in scaling the prime sums by log X instead

of log Xi. We do not use much about the test function ĝ in our estimates. All we use is that

the prime sums are restricted to p < Y, and therefore we will still have bounds of Y (to

various powers) for our sums.

We now finish the book-keeping. Expressions such as UZ/X in (3.39) are still

O(1), and expressions such as X/U and X/Z are now smaller. When we divide by the

cardinality of the family we still have terms such as Y3/2/X, and thus the support

requirements are unchanged (i.e. Sodd � X−1/2+ε + X−(1− 3
2 σ)+ε). �

A The Explicit Formula

We quickly review some needed facts about Dirichlet characters; see [11] for details. Let

χd be a primitive quadratic Dirichlet character of modulus |d|. Let c(d,χd) be the Gauss

sum

c(d,χd) =

d−1∑
k=1

χd(k)e2πik/d, (A.1)
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which is of modulus
√

d. Let

L(s,χd) =
∏
p

(1 − χd(p)p−s)−1
(A.2)

be the L-function attached to χd; the completed L-function is

Λ(s,χd) = π−(s+a)/2Γ

(
s + a

2

)
d−(s+a)/2L(s,χd) = (−1)a c(d,χd)√

d
Λ(1 − s,χd), (A.3)

where

a = a(χd) =

0 if χd(−1) = 1

1 if χd(−1) = −1.
(A.4)

We write the zeros of Λ(s,χd) as 1
2 + iγ; if we assume GRH then γ ∈ R. Let φ be an

even Schwartz function and φ̂ be its Fourier transform (φ̂(ξ) =
∫

φ(x)e−2πixξdx); we often

assume supp(φ̂) ⊂ (−σ,σ) for some σ < ∞. We set

H(s) = φ

(
s −

1
2

i

)
. (A.5)

While H(s) is initially define only when �(s) = 1/2, because of the compact support of φ̂

we may extend it to all of C:

φ(x) =

∫
∞

−∞

φ̂(ξ)e2πixξdξ

φ(x + iy) =

∫
∞

−∞

φ̂(ξ)e2πi(x+iy)ξdξ

H(x + iy) =

∫
∞

−∞

[
φ̂(ξ)e2π(x−

1
2 )
]
· e2πiyξdξ. (A.6)

Note that H(x + iy) is rapidly decreasing in y (for a fixed x it is the Fourier transform of a

nice function, and thus the claim follows from the Riemann–Lebesgue lemma). We now

derive the Explicit Formula for quadratic characters; note the functional equation will

always be even. We follow the argument given in [44].
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Proof of the Explicit Formula, Theorem 1.5. We have

Λ(s,χ) = π−(s+a)/2Γ

(
s + a

2

)
d(s+a)/2L(s,χd) = Λ(1 − s,χd)

Λ ′(s,χd)
Λ(s,χd)

= −
log π

2
+

1
2

Γ ′

Γ

(
s + a

2

)
+

log d
2

+
L ′(s,χd)
L(s,χd)

L ′(s,χd)
L(s,χd)

= −
∑

p

χd(p) log p
1 − χd(p)p−s

= −

∞∑
k=1

∑
p

χd(p)k log p
pks

. (A.7)

We will not approximate any terms; we are keeping all lower order terms to facilitate

comparison with the L-functions Ratios Conjecture. We set

I =
1

2πi

∫
�(s)=3/2

Λ ′(s,χd)
Λ(s,χd)

H(s)ds. (A.8)

We shift the contour to �(s) = −1/2. We pick up contributions from the zeros and poles

of Λ(s,χd). As χd is not the principal character, there is no pole from L(s,χd). There is

also no need to worry about a zero or pole from the Gamma factor Γ
(

s+a
2

)
as L(1,χd) �= 0.

Thus the only contribution is from the zeros of Λ(s,χd); the residue at a zero 1
2 +iγ is φ(γ).

Therefore

I =
∑

γ

φ(γ) +
1

2πi

∫
�(s)=−1/2

Λ ′(s,χd)
Λ(s,χd)

H(s)ds. (A.9)

As Λ(1 − s,χd) = Λ(s,χd), −Λ ′(1 − s,χd) = Λ(s,χd) and

I =
∑

γ

φ(γ) −
1

2πi

∫
�(s)=−1/2

Λ ′(1 − s,χd)
Λ(1 − s,χd)

H(s)ds. (A.10)

We change variables (replacing s with 1 − s), and then use the functional equation:

I =
∑

γ

φ(γ) −
1

2πi

∫
�(s)=3/2

Λ ′(s,χd)
Λ(s,χd)

H(1 − s)ds. (A.11)

Recalling the definition of I gives

∑
γ

φ(γ) =
1

2πi

∫
�(s)=3/2

Λ ′(s,χd)
Λ(s,χd)

[H(s) + H(1 − s)] ds. (A.12)

We expand Λ ′(s,χd)/Λ(s,χd) and shift the contours of all terms except L ′(s,χd)/L(s,χd)

to �(s) = 1/2 (this is permissible as we do not pass through any zeros or poles of the
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other terms); note that if s =
1
2 + iy then H(s) = H(1 − s) = φ(y) (φ is even). Expanding the

logarithmic derivative of Λ(s,χd) gives

∑
γ

φ(γ) =
1

2π

∫
∞

−∞

[
log

d
π

+
Γ ′

Γ

(
1
4

+
a
2

+
iy
2

)]
φ(y)dy

+
1

2πi

∫
�(s)=3/2

L ′(s,χd)
L(s,χd)

· [H(s) + H(1 − s)] ds

=
1

2π

∫
∞

−∞

[
log

d
π

+
1
2

Γ ′

Γ

(
1
4

+
a
2

+
iy
2

)
+

1
2

Γ ′

Γ

(
1
4

+
a
2

−
iy
2

)]
φ(y)dy

+
1

2πi

∫
�(s)=3/2

L ′(s,χd)
L(s,χd)

· [H(s) + H(1 − s)] ds, (A.13)

where the last line follows from the fact that φ is even.

We use (A.7) to expand L ′/L. In the arguments below we shift the contour to

�s = 1/2; this is permissible because of the compact support of φ̂ (see (A.6)):

1
2πi

∫
�(s)=3/2

L ′

L
(s + iy) · [H (s) + H (1 − s)] dy

= −
1

2πi

∞∑
k=1

∑
p

χd(p)k log p
∫

�(s)=3/2
[H (s) + H (1 − s)] e−ks log pdy

= −
2

2π

∞∑
k=1

∑
p

χd(p)k log p
pk/2

∫
∞

−∞

φ(y)e−2πiy· log pk

2π dy

= −
2

2π

∞∑
k=1

∑
p

χd(p)k log p
pk/2

φ̂

(
log pk

2π

)
. (A.14)

We therefore find that

∑
γ

φ(γ) =
1

2π

∫
∞

−∞

[
log

d
π

+
1
2

Γ ′

Γ

(
1
4

+
a
2

+
iy
2

)
+

1
2

Γ ′

Γ

(
1
4

+
a
2

−
iy
2

)]
φ(y)dy

−
2

2π

∞∑
k=1

∑
p

χd(p)k log p
pk/2

φ̂

(
log pk

2π

)
. (A.15)

We replace φ(x) with g(x) = φ
(

x · log X
2π

)
. A standard computation gives

ĝ(ξ) =
2π

log X φ̂
(
ξ · 2π

log X

)
. Summing over d ∈ F(X) completes the proof. �
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B Sums over Fundamental Discriminants

LEMMA B.1. Let d denote an even fundamental discriminant at most X, and set

X∗ =
∑

d≤X 1. Then

X∗
=

3
π2

X + O(X1/2) (B.1)

and for p ≤ X1/2 we have

∑
d≤X
p|d

1 =
X∗

p + 1
+ O(X1/2). (B.2)

�

PROOF. We first prove the claim for X∗, and then indicate how to modify the proof when

p|d. We could show this by recognizing certain products as ratios of zeta functions or by

using a Tauberian theorem; instead we shall give a straightforward proof suggested to

us by Tim Browning (see also [38]).

We first assume that d ≡ 1 mod 4, so we are considering even fundamental

discriminants {d ≤ X : d ≡ 1 mod 4,µ(d)2 = 1}; it is trivial to modify the arguments

below for d such that d/4 ≡ 2 or 3 modulo 4 and µ(d/4)2 = 1. Let χ4(n) be the nontrivial

character modulo 4: χ4(2m) = 0 and

χ4(n) =

1 if n ≡ 1 mod 4

0 if n ≡ 3 mod 4.
(B.3)

We have

S(X) =
∑
d≤X

µ(d)2=1, d≡1 mod 4

1

=
∑
d≤X
2|�d

µ(d)2 · 1 + χ4(d)
2

=
1
2

∑
d≤X
2|�d

µ(d)2
+

1
2

∑
d≤X

µ(d)2χ4(d) = S1(X) + S2(X). (B.4)

By Möbius inversion

∑
m2|d

µ(m) =

1 if d is square-free

0 otherwise.
(B.5)
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Thus

S1(X) =
1
2

∑
d≤X
2|�d

∑
m2|d

µ(m)

=
1
2

∑
m≤X1/2

2|�m

µ(m) ·
∑

d ≤ X/m2

2|�d

1

=
1
2

∑
m≤X1/2

2|�m

µ(m)
(

X
2m2

+ O(1)
)

=
X
4

∞∑
m=1
2|�m

µ(m)
m2

+ O(X1/2)

=
1
4

6
ζ(2)

·
(

1 −
1
22

)−1

· X + O(X1/2)

=
2
π2

X + O(X1/2) (B.6)

(because we are missing the factor corresponding to 2 in 1/ζ(2) above). Arguing in a

similar manner shows S2(X) = O(X1/2); this is due to the presence of χ4, giving us

S2(X) =
1
2

∑
m≤X1/2

χ4(m2)µ(m)
∑

d≤X/m2

χ4(d) � X1/2 (B.7)

(because we are summing χ4 at consecutive integers, and thus this sum is at most 1). A

similar analysis shows that the number of even fundamental discriminants d ≤ X with

d/4 ≡ 2 or 3 modulo 4 is X/π2 + O(X1/2). Thus

∑
d≤X

d an even fund. disc.

1 = X∗
=

3
π2

X + O(X1/2). (B.8)

We may trivially modify the above calculations to determine the number of

even fundamental discriminants d ≤ X with p|d for a fixed prime p. We first assume

p ≡ 1 mod 4. In (B.4) we replace µ(d)2 with µ(pd)2, d ≤ X with d ≤ X/p, 2 |� d and

(2p,d) = 1. These imply that d ≤ X, p|d and p2 does not divide d. As d and p are relatively
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prime, µ(pd) = µ(p)µ(d) and the main term becomes

S1;p(X) =
1
2

∑
d≤X/p

(2p,d)=1

∑
m2|d

µ(m)

=
1
2

∑
m≤(X/p)1/2

(2p,m)=1

µ(m) ·
∑

d ≤ (X/p)/m2

(2p,d)=1

1

=
1
2

∑
m≤(X/p)1/2

(2p,m)=1

µ(m)
(

X/p
m2

· p − 1
2p

+ O(1)
)

=
(p − 1)X

4p2

∞∑
m=1

(2p,m)=1

µ(m)
m2

+ O(X1/2)

=
1
4

6
ζ(2)

·
(

1 −
1
22

)−1

·
(

1 −
1
p2

)−1

· (p − 1)X
p2

+ O(X1/2)

=
2X

(p + 1)π2
+ O(X1/2), (B.9)

and the cardinality of this piece is reduced by (p + 1)−1 (note above we used #{n ≤ Y :

(2p,n) = 1} =
p−1
2p Y + O(1)). A similar analysis holds for S2;p(X), as well as the even

fundamental discriminants d with d/4 ≡ 2 or 3 modulo 4).

We need to trivially modify the above arguments if p ≡ 3 mod 4. If for instance

we require d ≡ 1 mod 4 then instead of replacing µ(d)2 with µ(d)2(1+χ4(d))/2 we replace

it with µ(pd)2(1 − χ4(d))/2, and the rest of the proof proceeds similarly.

It is a completely different story if p = 2. Note if d ≡ 1 mod 4 then 2 never divides

d, while if d/4 ≡ 2 or 3 modulo 4 then 2 always divides d. There are 3X/π2 + o(X1/2) even

fundamental discriminants at most X, and X/π2+O(x1/2) of these are divisible by 2. Thus,

if our family is all even fundamental discriminants, we do get the factor of 1/(p + 1) for

p = 2, as one-third (which is 1/(2 + 1) of the fundamental discriminants in this family

are divisible by 2. �

In our analysis of the terms from the L-functions Ratios Conjecture, we shall

need a partial summation consequence of Lemma B.1.

LEMMA B.2. Let d denote an even fundamental discriminant at most X and

X∗ =
∑

d≤X 1 and let z = τ − iw log X
2π with w ≥ 1/2. Then

∑
d≤X

e−2πiz log(d/π)
log X = X∗e−2πi(1−

log π
log X )z

(
1 −

2πiz
log X

)−1

+ O(log X). (B.10)
�
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PROOF. By Lemma B.1 we have

∑
d≤u

1 =
3u
π2

+ O(u1/2). (B.11)

Therefore by partial summation we have

∑
d≤X

e−2πiz log(d/π)
log X

= e2πi log π
log X

∑
d≤X

d−2πiz/ log X

= e2πiz log π
log X

[
3X + O(X1/2)

π2 X−
2πiz
log X −

∫ X (3u
π2 + O(u1/2)

)
· u−

2πiz
log X

−2πiz
log X

du
u

]
.

(B.12)

As we are assuming w ≥ 1/2, the first error term is of size O(X1/2X−w) = O(1). The second

error term (from the integral) is O(log X) for such w. This is because the integration

begins at 1 and the integrand is bounded by u−
1
2 −w. Thus

∑
d≤X

e−2πiz log(d/π)
log X

= e2πiz log π
log X

[
3X
π2

e−2πiz
+

3
π2 · 2πiz

log X

∫ X

u−2πiz/ log Xdu

]
+ O(log X)

= e2πiz log π
log X

[
3X
π2

e−2πiz
+

3
π2 · 2πiz

log X
X1−2πiz/ log X

1 − 2πiz/ log X

]
+ O(log X)

= X∗e2πiz log π
log X e−2πiz

[
1 +

2πiz
log X

∞∑
ν=0

(
2πiz
log X

)ν
]

+ O(log X)

= X∗e−2πi(1−
log π
log X )z

(
1 −

2πiz
log X

)−1

+ O(log X). (B.13)
�

C Improved Bound for Nonsquare m Terms in SM(X,Y, ĝ,Φ)

Gao [17] proves that the nonsquare m-terms contribute � (U2Z
√

Y log7 X)/X to SM(X,Y,

ĝ,Φ). As this bound is just a little too large for our applications, we perform a more

careful analysis below. Denoting the sum of interest by R,

R =
∑
α≤Z

(α,2)=1

∑
p≤Y

(2α,p)=1

log p
p

ĝ

(
log p
log X

) ∑
m �=0,�

(−1)mΦ̃

(
mX

2α2p

)(
m
p

)
, (C.1)
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Gao shows that

R �
∑
α≤Z

log3 X
α2

(R1 + R2 + R3), (C.2)

with

R1,R2 � Uα2
√

Y log4 X
X

R3 � U2α2
√

Y log7 X
X

. (C.3)

The bounds for R1 and R2 suffice for our purpose, leading to contributions bounded by

(UZ
√

Y log4 X)/X ; however, the R3 bound gives too crude a bound—we need to save a

power of U.

We have (see page 36 of [17], with k = 1, k2 = 0, k1 = 0, α1 = 1 and α0 = 0) that

R3 �
∫ Y

1

X
α2V5/2

∑
p<Y

log p
p2

∞∑
m=1

(log3 m)mΦ̃ ′
(

mX
2α2pV

)
dV. (C.4)

We have (see (3.10) of [17]) that

Φ̃ ′(ξ) � Uj−1|ξ|−j for any integer j ≥ 1. (C.5)

Letting M = X2008, we break the m-sum in R3 into m ≤ M and m > M. For m ≤ M we use

(C.5) with j = 2 while for m > M we use (C.5) with j = 3. (Gao uses j = 3 for all m. While

we save a bit for small m by using j = 2, we cannot use this for all m as the resulting m

sum does not converge.)

Thus the small m contribute

�
∫ Y

1

X
α2V5/2

∑
p<Y

log p
p2

∑
m≤M

(log3 m)m
U22α4p2V2

m2X2
dV

� Uα2

X

∑
p<Y

log p
∑

m≤M

log3 m
m

∫ Y

1

dV√
V

� UY3/2α2 log4 X
X

(C.6)
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(since M = X2008 the m-sum is O(log4 X)). The large m contribute

�
∫ Y

1

X
α2V5/2

∑
p

log p
p2

∑
m>M

(log3 m)m
U223α6p3V3

m3X3
dV

� U2α4

X2

∑
p<Y

p log p
∑

m>M

log3 m
m3

∫ Y

1
V1/2dV

� α4U2Y3/2Y2 log X
X2M2−ε

. (C.7)

For our choices of U, Y and Z, the contribution from the large m will be negligible (due to

the M2−ε = X4016−2ε in the denominator). Thus for these choices

R �
∑
α≤Z

log3 X
α2

(R1 + R2 + R3)

� UZ
√

Y log7 X
X

+
UZY3/2 log4 X

X
+

Z3U2Y7/2 log4 X
X4018−2ε

. (C.8)

The last term is far smaller than the first two. In the first term we save a power of U from

Gao’s bound, and in the second we replace U with Y. As Y = Xσ, for σ sufficiently small

there is a significant savings.
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[12] Dueñez, E., and S. J. Miller. “The effect of convolving families of L-functions on the underlying

group symmetries.” (2006): preprint arXiv.org/abs/math/0607688.
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[41] Royer,E. “ Petits zéros de fonctions L de formes modulaires.” Acta Arithmetica 99, no. 2 (2001):

147–72.

[42] Rubinstein, M. “Low-lying zeros of L-functions and random matrix theory.” Duke Mathemati-

cal Journal 109 (2001): 147–81.



36 S. J. Miller

[43] Rubinstein, M. “Computational Methods and Experiments in Analytic Number Theory.” In

Recent Perspectives in Random Matrix Theory and Number Theory, edited by F. Mezzadri and

N. C. Snaith, 407–483. Cambridge, UK: Cambridge University Press, 2005.

[44] Rudnick, Z., and P. Sarnak. “Zeros of principal L-functions and random matrix theory.” Duke

Mathematical Journal 81 (1996): 269–322.

[45] Soundararajan, K. “Nonvanishing of quadratic Dirichlet L-functions at s = 1/2.” Annals of

Mathematics 152, no. 2 (2000): 447–88.

[46] Young,M. “Lower-order terms of the 1-level density of families of elliptic curves.” International

Mathematics Research Notices 2005, no. 10 (2005): 587–633.

[47] Young, M. “Low-lying zeros of families of elliptic curves.” Journal of the American Mathemat-

ical Society 19, no. 1 (2006): 205–50.


	1. Introduction
	2. Analysis of the Terms from the Ratios Conjecture.
	3. Analysis of the Terms from Number Theory
	Appendix A. The Explicit Formula
	Appendix B. Sums over Fundamental Discriminants
	Appendix C. Improved Bound for Nonsquare m Terms in SM(X,Y,g"0362g,)

