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Abstract. In upcoming papers by Conrey, Farmer and Zirnbauer there appear conjectural for-
mulas for averages, over a family, of ratios of products of shifted L-functions. In this paper we will
present various applications of these ratios conjectures to a wide variety of problems that are of
interest in number theory, such as lower order terms in the zero statistics of L-functions, mollified
moments of L-functions and discrete averages over zeros of the Riemann zeta function. In partic-
ular, using the ratios conjectures we easily derive the answers to a number of notoriously difficult
computations.
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1. Introduction

Applications of random matrix theory in number theory began with Montgomery’s pair corre-
lation conjecture [36]. In this paper Montgomery conjectured that, in the limit for large height
up the critical line, any local statistic of the zeros of the Riemann zeta function is given by the
corresponding statistic for eigenvalues from the GUE ensemble of random matrix theory [34]. A
local statistic is one that involves only correlations between zeros separated on a scale of a few
mean spacings. Odlyzko checked the statistics numerically for the pair correlation and the nearest
neighbour spacing distribution and found spectacular agreement [37]. At leading order the zero
statistics and eigenvalues statistics are identical; asymptotically no factors of an arithmetical nature
appear. However, it is clear that arithmetical contributions play a role in lower order terms, and
Bogomolny and Keating [3] identified these in the case of the pair correlation function.

Katz and Sarnak [27] proposed that local statistics of zeros of families of L-functions could be
modelled by the eigenvalues of matrices from the classical compact groups with Haar measure.
In this way each family of L-functions is believed to have a symmetry type: unitary, symplectic
or orthogonal. Iwaniec, Luo and Sarnak [24] calculated the leading asymptotics for the one-level
densities (using test functions whose Fourier transforms have limited support) for families of L-
functions with each symmetry type and found agreement with random matrix theory. Again these
leading terms had no arithmetic part.

More recently, random matrix theory has been applied to the moments of L-functions averaged
over a family. These are global, rather than local, statistics. A characteristic feature of a global
statistic is that an arithmetic factor appears in the leading order term. In the original papers
[29,30] the leading term was a product of the corresponding moment of a characteristic polynomial
from random matrix theory and a seemingly independent Euler product.

Often in random matrix theory one can calculate such global statistics exactly for any finite
matrix size N . In particular, when evaluating moments of characteristic polynomials one obtains
an exact asymptotic expansion in N as N → ∞. We now understand conjecturally the analogue for
moments of L-functions and in particular how the arithmetic and random matrix factors interact
in the lower order terms. For any family of L-functions we can conjecture [10] an asymptotic
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expansion for any moment which we believe is accurate essentially to the square root of the size of
the family.

A natural way to generalize these moment formulae is to consider averages of ratios of products
of L-functions or characteristic polynomials. In two forthcoming papers [11,12] there appear conjec-
tural formulas for averages, over a family, of ratios of products of shifted L-functions. Those papers
contain several applications of these conjectures, as well as theorems proving the random matrix
analogues of these conjectures. In [13] and [5], different proofs of the random matrix theorems are
given, although not for the full range of the main parameter, the dimension of the matrix.

The point is that these ratios conjectures are useful for calculating both local and global statistics.
In fact quoting from [4] “The averages of products and ratios of characteristic polynomials are more
fundamental characteristics of random matrix models than the correlation functions.” We would
argue the same can be said for L-functions. From the ratios conjectures not only can you obtain all
n-level correlations, but also essentially any local or global statistic. An important feature on the
number theory side is that this includes all lower order terms, in particular it shows the arithmetic
contribution present in local statistics.

In this paper we will present various applications of these ratios conjectures. In Section 2 we give
the precise statement and sketch the derivations of some examples of the ratios conjecture for each
of the three symmetry types: unitary, symplectic and orthogonal. These examples, which have one
or two L-functions in the numerator and denominator, cover most of the cases that we need in
the applications in this paper, but the conjectures are more general in that they can involve any
number of L-functions [11]. Theorem 2.7 and 2.10 give auxiliary formulae useful in calculating the
most basic local statistic, the one-level density. In Section 3 we then show how the ratios conjecture
can be used to compute the one-level density of the simplest family of L-functions with symplectic
symmetry, namely Dirichlet L-functions with real quadratic characters. We state a similar result
for the orthogonal family associated with quadratic twists of the Ramanujan τ -function. In the
following section we consider lower order terms in the pair correlation of the zeros of the Riemann
zeta-function. As mentioned above, Bogomolny and Keating were the first to find these lower order
terms; their heuristic method involved a careful analysis of the Hardy-Littlewood conjectures for
prime pairs. The strength of our method is that it allows us to avoid such detailed considerations.

The next two sections consider averages of mollified L-functions. Mollifiers are used to obtain
information about small values of L-functions, in particular zeros. Mollifiers were first introduced
in the context of the Riemann zeta function to bound the number of zeros in a vertical strip to the
right of the half-line (i.e. zero density results). Subsequently Selberg, and then Levinson, obtained
lower bounds for the proportion of zeros satisfying the Riemann Hypothesis by mollifying zeta in
the neighbourhood of the critical line. Recent uses have focused on obtaining non-vanishing results
at the central point for families of L-functions. All of these results involve complicated analysis,
for example Levinson’s asymptotic evaluation of the mollified second moment of zeta takes nearly
fifty pages. Before embarking on such a calculation it would be useful to know ahead of time what
the answer is. In Section 5 we show how to obtain these answers quickly. For each of the families
that we’ve introduced we calculate the mollified second moment of arbitrary linear combinations
of derivatives and reveal the simple structure of the result. In all cases where these have been
rigourously calculated (only accomplished when the mollifier is sufficiently short), these results are
in agreement. In Section 6 we show how to mollify any moment of the Riemann zeta function and
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give detailed expressions in the case of the fourth moment; none of these, apart from the second
moment, have been calculated without using the ratios conjecture. It is interesting to note that
unlike other averages considered in this paper, there does not seem to be a random matrix analogue
of mollifying as there is nothing that naturally corresponds to a partial Dirichlet series.

Another kind of average which gives useful information about the distribution of zeros is a
discrete moment summing the zeta function, or its derivatives, at or near the zeros. In Section 7
we consider moments of |ζ ′(ρ)| and |ζ(ρ+ a)|. Using the ratios conjecture we show how to obtain
all of the lower-order terms for these averages. While the leading order terms had previously been
conjectured or proved, it was not known how to obtain these lower order terms.

In Section 8 we show how to use the ratios conjecture to reproduce the asymptotic formulae used
to obtain non-vanishing results for various families. In addition we sketch how one should go about
proving that the proportion of non-vanishing for the kth derivative L(k)(1/2, χ) approaches 100%
as k → ∞ for the family of all Dirichlet L-functions; by contrast, in [35] a convincing argument is
made that one can’t do better than 2/3 non-vanishing for Λ(k)(1/2, χ), where Λ is the completed
L-function, without mollifying a higher power than the second.

In short, there are a number of difficult computations which the ratios conjectures simplify
significantly. A few of these computations have the property that they could be made into theorems
by proceeding alternatively; some are purely conjectural. However, even for those that could be
proved by other methods, knowing the answer ahead of time is useful as a guide along the way, a
check at the end and even in deciding whether to commence what could be a painful calculation.

Throughout this paper we assume the Riemann Hypothesis for all the L-functions that arise.

2. Ratios conjectures

2.1. A unitary example. An example of a basic conjecture for the zeta-function follows. This
was the example that Farmer first considered when formulating his initial conjecture about averages
of ratios of zeta functions with shifts. With s = 1/2 + it, let

Rζ(α, β, γ, δ) :=
∫ T

0

ζ(s+ α)ζ(1 − s+ β)
ζ(s+ γ)ζ(1 − s+ δ)

dt.(2.1)

Farmer [16] conjectured that for α, β, γ, δ << 1/ log T ,

Rζ(α, β, γ, δ) ∼ T
(α+ δ)(β + γ)
(α+ β)(γ + δ)

− T 1−α−β (δ − β)(γ − α)
(α+ β)(γ + δ)

,(2.2)

as T → ∞, provided that �γ,�δ > 0. Our ratios conjecture gives us a recipe for computing a more
precise conjecture for Rζ .

Briefly, we use the approximate functional equation

(2.3) ζ(s) =
∑
n≤X

1
ns

+ χ(s)
∑
n≤Y

1
n1−s

+ remainder,
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where s = σ + it, χ(s) = 2sπs−1 sin(sπ/2)Γ(1 − s) and XY = t
2π , for the zeta functions in the

numerator and ordinary Dirichlet series expansions for those in the denominator:

(2.4)
1
ζ(s)

=
∞∑

n=1

µ(n)
ns

.

We only use the pieces which have the same number of χ(s) as χ(1 − s) and we integrate term-
by-term, retaining only the diagonal pieces. We then complete all of the sums that we arrive
at.

Thus, the term from the “first” part of the two approximate functional equations gives T times

∑
hm=kn

µ(h)µ(k)
m1/2+αn1/2+βh1/2+γk1/2+δ

=
∏
p

∑
h+m=k+n

µ(ph)µ(pk)
p(1/2+α)m+(1/2+β)n+(1/2+γ)h+(1/2+δ)k

.(2.5)

The only possibilities for h and k here are 0 and 1. Thus, we easily find that the right-hand sum
above is

=
1(

1 − 1
p1+α+β

) (1 − 1
p1+β+γ

− 1
p1+α+δ

+
1

p1+γ+δ

)
;(2.6)

thus, the product over primes is

ζ(1 + α+ β)ζ(1 + γ + δ)
ζ(1 + α+ δ)ζ(1 + β + γ)

Aζ(α, β, γ, δ),(2.7)

where

Aζ(α, β, γ, δ) =
∏
p

(
1 − 1

p1+γ+δ

)(
1 − 1

p1+β+γ − 1
p1+α+δ + 1

p1+γ+δ

)
(
1 − 1

p1+β+γ

)(
1 − 1

p1+α+δ

) .(2.8)

The other term comes from the second piece of each approximate functional equation and is similar
to the first piece except that α is replaced by −β and β is replaced by −α. Also, because of the
χ-factors in the functional equation, we have an extra factor of

χ(s+ α)χ(1 − s+ β) =
(
t

2π

)−α−β (
1 +O

(
1
|t|
))

.(2.9)

Thus, the more precise ratios conjecture gives
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Conjecture 2.1 (Conrey, Farmer and Zirnbauer [11]). With constraints on α, β, γ and δ as de-
scribed below at (2.11), we have

Rζ(α, β, γ, δ) =
∫ T

0

ζ(s+ α)ζ(1 − s+ β)
ζ(s+ γ)ζ(1 − s+ δ)

dt

=
∫ T

0

(
ζ(1 + α+ β)ζ(1 + γ + δ)
ζ(1 + α+ δ)ζ(1 + β + γ)

Aζ(α, β, γ, δ)(2.10)

+
(
t

2π

)−α−β ζ(1 − α− β)ζ(1 + γ + δ)
ζ(1 − β + δ)ζ(1 − α+ γ)

Aζ(−β,−α, γ, δ)
)

dt+O
(
T 1/2+ε

)
,

where Aζ is defined at (2.8).

In the following sections we have similar conjecture for ratios of L-functions averaged over various
families. In these families the L-functions are indexed by an integer d and we consider averages
for d < X. In all of these examples we constrain the shifts as follows. For α a generic shift in the
numerator (α and β in the above example) and δ a generic shift in the denominator, we require

− 1
4
< �α < 1

4
(2.11a)

1
logC

� �δ < 1
4

(2.11b)

�α,�δ �ε C
1−ε (for every ε > 0)(2.11c)

where C = T in the above example and C = X in the case of discrete families of L-functions. In
conjectures that refer to these conditions the error terms are believed to be uniform in the above
range of parameters.

Remark 2.2. Equation (2.11b) can be relaxed if for each shift in the denominator going to zero
there is a corresponding shift in the numerator going to zero at the same rate.

Remark 2.3. The bound of 1/4 on the absolute values of the real parts of the shifts are to prevent
divergence of the Euler products that appear in the ratios conjectures.

Remark 2.4. Because of the uniformity in the parameters α, β, γ, δ we can differentiate our con-
jectural formulas with respect to these parameters and the results are valid with the same range and
error terms.

For obtaining lower order terms in pair correlation in Section 4, we need the following:

Theorem 2.5. Assuming Conjecture 2.1, we have∫ T

0

ζ ′

ζ
(s+ α)

ζ ′

ζ
(1 − s+ β) dt =

∫ T

0

((
ζ ′

ζ

)′
(1 + α+ β)+(2.12)

(
t

2π

)−α−β

ζ(1 + α+ β)ζ(1 − α− β)
∏
p

(1 − 1
p1+α+β )(1 − 2

p + 1
p1+α+β )

(1 − 1
p)2

−
∑

p

(
log p

(p1+α+β − 1)

)2
)

dt+O(T 1/2+ε),
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provided that 1
log T � �α,�β < 1

4 .

This theorem follows from (2.10) by differentiating with respect to α and β and setting γ = α
and δ = β. To perform this calculation, it is helpful to observe that A(α, β, α, β) = 1. Also, when
differentiating the second term on the right side of (2.10) it is useful to observe that for a function
f(z, w) which is analytic at (z, w) = (α, α),

(2.13)
d

dα

f(α, γ)
ζ(1 − α+ γ)

∣∣∣∣
γ=α

= −f(α, α).

2.2. Symplectic examples. As a second example we consider the family of Dirichlet L-functions
L(s, χd) associated with real, even, Dirichlet characters χd. Let

RD(α, β; γ, δ) :=
∑
d≤X

L(1/2 + α, χd)L(1/2 + β, χd)
L(1/2 + γ, χd)L(1/2 + δ, χd)

,(2.14)

with the usual conditions (2.11) on the shifts α, β, γ and δ. Let us also consider the simpler example

RD(α; γ) :=
∑
d≤X

L(1/2 + α, χd)
L(1/2 + γ, χd)

.(2.15)

As part of our recipe, we replace the L(s, χd) in the numerator by approximate functional equation

(2.16) L(1
2 + α, χd) =

∑
m<x

χd(m)
m1/2+α

+
(
d

π

)−α Γ(1/4 − α/2)
Γ(1/4 + α/2)

∑
n<y

χd(n)
n1/2−α

+ remainder,

where xy = d/(2π), and we replace the L(s, χd) in the denominator by their infinite series:

(2.17)
1

L(s, χd)
=

∞∑
h=1

µ(h)χd(h)
hs

.

We consider each of the 2λ (if there are λ factors in the numerator) pieces separately and average
term-by-term within those pieces. We only retain the terms where we are averaging over squares;
in other words we use the main part of the formula

(2.18)
∑
d≤X

χd(n) =
{
a(n)X∗ + small if n is a square

small if n is not a square

where X∗ =
∑

d≤X 1 is the number of fundamental discriminants below X and where

(2.19) a(n) =
∏
p|n

p

p+ 1
.

After computing these ‘diagonal’ terms, we complete the sums by extending to infinity the ranges of
the summation variables; we identify these terms as ratios of products of zeta functions multiplied
by absolutely convergent Euler products. The sum of these expressions, one for each product of
pieces of the approximate functional equations, forms our conjectural answer.
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Proceeding to details, let us first consider the simpler example RD(α; γ). We restrict attention
to the ‘first’ piece of the approximate functional equation. Thus, we consider∑

d≤X

∑
h,m

µ(h)χd(hm)
h1/2+γm1/2+α

.(2.20)

Retaining only the terms for which hm is square, leads us to

X∗ ∑
hm=�

µ(h)a(hm)
h1/2+γm1/2+α

.(2.21)

We express this sum as an Euler product (to “save” variables we now replace h by ph and m by
pm):

∏
p

∑
h+m
even

µ(ph)a(ph+m)
ph(1/2+γ)+m(1/2+α)

.(2.22)

The effect of µ(ph) is to limit the choices for h to 0 or 1. When h = 0 we have

∑
m

even

a(pm)
pm(1/2+α)

= 1 +
p

p+ 1

∞∑
m=1

1
pm(1+2α)

= 1 +
p

(p+ 1)
1

p1+2α

1
(1 − 1

p1+2α )
,(2.23)

and when h = 1 there is a contribution of∑
m

odd

− a(pm+1)
p1/2+γpm(1/2+α)

= − p

(p+ 1)
1

p1+α+γ

1
(1 − 1

p1+2α )
.(2.24)

Thus, the Euler product simplifies to

ζ(1 + 2α)
ζ(1 + α+ γ)

∏
p

(
1 − 1

p1+α+γ

)−1(
1 − 1

(p+ 1)p1+2α
− 1

(p+ 1)pα+γ

)
.(2.25)

The product over primes is absolutely convergent as long as �α,�γ > −1/4.

The other piece can be determined by recalling the functional equation

L(1/2 + α, χd) =
(
d

π

)−α Γ(1/4 − α/2)
Γ(1/4 + α/2)

L(1/2 − α, χd).(2.26)

Thus, in total we expect that

Conjecture 2.6 (Conrey, Farmer and Zirnbauer [11]). With constraints on α and γ as described
at (2.11), we have

RD(α; γ) =
∑
d≤X

L(1/2 + α, χd)
L(1/2 + γ, χd)

=
∑
d≤X

(
ζ(1 + 2α)
ζ(1 + α+ γ)

AD(α; γ)

+
(
d

π

)−α Γ(1/4 − α/2)
Γ(1/4 + α/2)

ζ(1 − 2α)
ζ(1 − α+ γ)

AD(−α; γ)

)
+O(X1/2+ε),(2.27)
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where

AD(α; γ) =
∏
p

(
1 − 1

p1+α+γ

)−1(
1 − 1

(p+ 1)p1+2α
− 1

(p+ 1)pα+γ

)
.(2.28)

For applications to the one-level density in the next section, we note that∑
d≤X

L′(1/2 + r, χd)
L(1/2 + r, χd)

=
d

dα
RD(α; γ)

∣∣∣∣
α=γ=r

.(2.29)

Now
d

dα

ζ(1 + 2α)
ζ(1 + α+ γ)

AD(α; γ)
∣∣∣∣
α=γ=r

=
ζ ′(1 + 2r)
ζ(1 + 2r)

AD(r; r) +A′
D(r; r)(2.30)

and
d

dα

(
d

π

)−α Γ(1/4 − α/2)
Γ(1/4 + α/2)

ζ(1 − 2α)
ζ(1 − α+ γ)

AD(−α; γ)
∣∣∣∣
α=γ=r

(2.31)

= −
(
d

π

)−r Γ(1/4 − r/2)
Γ(1/4 + r/2)

ζ(1 − 2r)AD(−r; r).

Also, AD(r; r) = 1,

AD(−r; r) =
∏
p

(
1 − 1

(p+ 1)p1−2r
− 1
p+ 1

)(
1 − 1

p

)−1

,(2.32)

and

A′
D(r; r) =

∑
p

log p
(p+ 1)(p1+2r − 1)

.(2.33)

Thus, the ratios conjecture implies (see Remark 2.4):

Theorem 2.7. Assuming Conjecture 2.6, 1
log X � �r < 1

4 and �r �ε X
1−ε we have

∑
d≤X

L′(1/2 + r, χd)
L(1/2 + r, χd)

=
∑
d≤X

(
ζ ′(1 + 2r)
ζ(1 + 2r)

+A′
D(r; r) −

(
d

π

)−r Γ(1/4 − r/2)
Γ(1/4 + r/2)

ζ(1 − 2r)AD(−r; r)
)

(2.34)

+O(X1/2+ε),

where AD(α; γ) is defined in (2.28).

Now we look at the case of two L-functions in the numerator and denominator. Here we will
only work to keep the first main terms when the shifts α, β, γ and δ are � 1

log X and X → ∞. We
consider, from the first part of the functional equation for each of the L-functions,∑

d≤X

∑
h,k,m,n

µ(h)µ(k)χd(hkmn)
h1/2+γk1/2+δm1/2+αn1/2+β

.(2.35)
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Retaining only the terms for which hkmn is square, leads us to

X∗ ∑
hkmn=�

µ(h)µ(k)a(hkmn)
h1/2+γk1/2+δm1/2+αn1/2+β

.(2.36)

We express this sum as an Euler product (to “save” variables we now replace h by ph, etc.)∏
p

∑
h+k+m+n

even

µ(ph)µ(pk)a(ph+k+m+n)
ph(1/2+γ)+k(1/2+δ)+m(1/2+α)+n(1/2+β)

.(2.37)

We analyze the inner sum by dividing it into the four cases according to h = 0, 1 and k = 0, 1;
also it is helpful to note that

∑
m+n
even

xmyn = 1+xy
(1−x2)(1−y2)

and
∑

m+n
odd

xmyn = x+y
(1−x2)(1−y2)

. It is
more complicated to write down the exact formula for this, complete with the arithmetic factor
AD(α, β; γ, δ). This factor is asymptotically 1 for small values of the parameters. Since we are
interested in the first main terms here we record that the relevant zeta factors in the expression
above are

ζ(1 + 2α)ζ(1 + 2β)ζ(1 + α+ β)ζ(1 + γ + δ)
ζ(1 + α+ γ)ζ(1 + α+ δ)ζ(1 + β + γ)ζ(1 + β + δ)

=
(α+ γ)(α+ δ)(β + γ)(β + δ)

4αβ(α+ β)(γ + δ)
+O(1/ logX).(2.38)

Thus we have, from the remaining parts of the functional equation:

Conjecture 2.8 (Conrey, Farmer and Zirnbauer [11]). With α, β, γ, δ � 1
log X , we have

1
X∗RD(α, β; γ, δ) =

(α+ γ)(α+ δ)(β + γ)(β + δ)
4αβ(α+ β)(γ + δ)

−X−α (−α+ γ)(−α+ δ)(β + γ)(β + δ)
4αβ(−α+ β)(γ + δ)

−X−β (α+ γ)(α+ δ)(−β + γ)(−β + δ)
4αβ(α− β)(γ + δ)

−X−α−β (−α+ γ)(−α+ δ)(−β + γ)(−β + δ)
4αβ(α+ β)(γ + δ)

(2.39)

+O(1/ logX),

as X → ∞.

2.3. Orthogonal examples. As a third example, we consider the orthogonal family of quadratic
twists of the L-function L∆ associated with the unique weight 12 cusp form for the full modular
group:

L∆(s, χd) =
∞∑

n=1

χd(n)τ∗(n)
ns

=
∏
p

(
1 − τ∗(p)χd(p)

ps
+
χd(p2)
p2s

)−1

,(2.40)

where τ∗(n) = τ(n)/n11/2 and τ(n) is Ramanujan’s tau-function. For d > 0, this has functional
equation

ξ∆(s, χd) :=
(
d

2π

)s

Γ(s+ 11/2)L∆(s, χd) = ξ∆(1 − s, χd).(2.41)

Let

R∆(α; γ) :=
∑
d≤X

L∆(1/2 + α, χd)
L∆(1/2 + γ, χd)

(2.42)
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and let

R∆(α, β; γ, δ) :=
∑
d≤X

L∆(1/2 + α, χd)L∆(1/2 + β, χd)
L∆(1/2 + γ, χd)L∆(1/2 + δ, χd)

.(2.43)

As in the symplectic example we will calculate the full expression for R∆(α; γ) and only the
leading main terms for R∆(α, β; γ, δ).

Note that

1
L∆(s, χd)

=
∏
p

(
1 − τ∗(p)χd(p)

ps
+
χd(p2)
p2s

)
=:

∞∑
n=1

µ∆(n)χd(n)
ns

.(2.44)

To commence the calculation of R∆(α; γ) we replace each L-function in the numerator by the first
half of the approximate functional equation

(2.45) L∆(1/2 + α, χd) =
∑
m<x

χd(m)τ∗(m)
ms

+
(
d

2π

)−2α Γ(6 − α)
Γ(6 + α)

∑
n<y

χd(n)τ∗(n)
n1−s

+ remainder,

where xy = d2/(2π). We must then consider∑
d≤X

∑
h,m

µ∆(h)τ∗(m)χd(hm)
h1/2+γk1/2+α

,(2.46)

which leads to

X∗ ∑
hm=�

µ∆(h)τ∗(m)a(hm)
h1/2+γk1/2+α

(2.47)

= X∗∏
p

(
1 +

p

p+ 1

∑
h+m>0
even

µ∆(ph)τ∗(pm)
ph(1/2+γ)+m(1/2+α)

)
.

We note that µ∆(p) = −τ∗(p), µ∆(p2) = 1, and µ∆(pm) = 0 for m > 2, so that the product over
primes here is∏

p

(
1 +

p

p+ 1

( ∞∑
m=1

τ∗(p2m)
pm(1+2α)

− τ∗(p)
p1+α+γ

∞∑
m=0

τ∗(p2m+1)
pm(1+2α)

+
1

p1+2γ

∞∑
m=0

τ∗(p2m)
pm(1+2α)

))
.(2.48)

We note that
∞∑

m=0

τ∗(p2m)x2m =
1
2

{(
1 − τ∗(p)x+ x2

)−1

+
(

1 + τ∗(p)x+ x2

)−1
}

(2.49)

and
∞∑

m=0

τ∗(p2m+1)x2m+1 =
1
2

{(
1 − τ∗(p)x+ x2

)−1

−
(

1 + τ∗(p)x+ x2

)−1
}
.(2.50)

The “polar” part of the product (2.48) is ζ(1+2γ)
ζ(1+α+γ) ; we can factor these terms out and be left with

a convergent Euler product. However, we prefer at this point to factor out some other L-functions
present here with values near the 1-line and to be left with an Euler product which is more rapidly
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convergent. To this end, we recall the Rankin-Selberg convolution of L∆ and the symmetric square
L-function associated with L∆. We can write the Euler product for L∆ as

L∆(s) =
∏
p

(
1 − αp

ps

)−1(
1 − αp

ps

)−1

,(2.51)

where αp + αp = τ∗(p) and αpαp = |αp|2 = 1. The Rankin-Selberg L-function is

L(τ ⊗ τ, s) =
∞∑

n=1

τ∗(n)2

ns
= ζ(s)L∆(sym2, s)ζ(2s)−1,(2.52)

where the symmetric square L-function is given by

L∆(sym2, s) =
∏
p

(
1 − α2

p

ps

)−1(
1 − 1

ps

)−1
(

1 − α2
p

ps

)−1

(2.53)

and is an entire function of s. As a Dirichlet series, we can write

L∆(sym2, s) = ζ(2s)−1
∞∑

n=1

τ∗(n2)
ns

.(2.54)

Thus, the product (2.48) can be expressed as

ζ(1 + 2γ)L∆(sym2, 1 + 2α)
ζ(1 + α+ γ)L∆(sym2, 1 + α+ γ)

B∆(α; γ),(2.55)

where

B∆(α; γ) =
∏
p

(
1 +

p

p+ 1

( ∞∑
m=1

τ∗(p2m)
pm(1+2α)

− τ∗(p)
p1+α+γ

∞∑
m=0

τ∗(p2m+1)
pm(1+2α)

+
1

p1+2γ

∞∑
m=0

τ∗(p2m)
pm(1+2α)

))

×
(
1 − τ∗(p2)

p1+2α + τ∗(p2)
p2+4α − 1

p3+6α

)(
1 − 1

p1+2γ

)
(
1 − τ∗(p2)

p1+α+γ + τ∗(p2)
p2+2α+2γ − 1

p3+3α+3γ

)(
1 − 1

p1+α+γ

) .(2.56)

Note that B(r; r) = 1; this follows from the fact that τ∗(p2m+1)τ∗(p) = τ∗(p2m+2)+τ∗(p2m). Thus,
the ratios conjecture gives:

Conjecture 2.9 (Conrey, Farmer and Zirnbauer [11]). With constraints on α and γ as described
at (2.11), we have

R∆(α; γ) =
∑
d≤X

L∆(1/2 + α, χd)
L∆(1/2 + γ, χd)

=
∑
d≤X

(
ζ(1 + 2γ)L∆(sym2, 1 + 2α)

ζ(1 + α+ γ)L∆(sym2, 1 + α+ γ)
B∆(α; γ)

+
(
d

2π

)−2α Γ(6 − α)
Γ(6 + α)

ζ(1 + 2γ)L∆(sym2, 1 − 2α)
ζ(1 − α+ γ)L∆(sym2, 1 − α+ γ)

B∆(−α; γ)
)

+O(X1/2+ε),(2.57)

where B∆(α, γ) is defined in (2.56).

For application to the one-level density, we note that∑
d≤X

L′
∆(1/2 + r, χd)

L∆(1/2 + r, χd)
=

d

dα
R∆(α; γ)

∣∣∣∣
α=γ=r

.(2.58)
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Now

d

dα

ζ(1 + 2γ)L∆(sym2, 1 + 2α)
ζ(1 + α+ γ)L∆(sym2, 1 + α+ γ)

B∆(α; γ)
∣∣∣∣
α=γ=r

= −ζ
′(1 + 2r)
ζ(1 + 2r)

+
L′

∆(sym2, 1 + 2r)
L∆(sym2, 1 + 2r)

+B′
∆(r; r)(2.59)

and

d

dα

(
d

2π

)−2α Γ(6 − α)
Γ(6 + α)

ζ(1 + 2γ)L∆(sym2, 1 − 2α)
ζ(1 − α+ γ)L∆(sym2, 1 − α+ γ)

B∆(−α; γ)
∣∣∣∣
α=γ=r

(2.60)

= −
(
d

2π

)−2r Γ(6 − r)
Γ(6 + r)

ζ(1 + 2r)L∆(sym2, 1 − 2r)
L∆(sym2, 1)

B∆(−r; r).

Thus, the ratios conjecture implies:

Theorem 2.10. Assuming Conjecture 2.9, if 1
log X � �r < 1

4 and �r �ε X
1−ε, then

∑
d≤X

L′
∆(1/2 + r, χd)

L∆(1/2 + r, χd)
=
∑
d≤X

(
− ζ ′(1 + 2r)
ζ(1 + 2r)

+
L′

∆(sym2, 1 + 2r)
L∆(sym2, 1 + 2r)

+B′
∆(r; r)

−
(
d

2π

)−2r Γ(6 − r)
Γ(6 + r)

ζ(1 + 2r)L∆(sym2, 1 − 2r)
L∆(sym2, 1)

B∆(−r; r)
)

+O(X1/2+ε)(2.61)

where B∆(α, γ) is defined in (2.56).

We now determine the main terms when α, β, γ, δ � 1
log X and X → ∞ for the average over this

family of the ratio R∆(α, β; γ, δ) of two L-functions over two L-functions. We are quickly led to
consider

∑
hkmn=�

µ∆(h)µ∆(k)τ∗(m)τ∗(n)a(hkmn)
h1/2+γk1/2+δm1/2+αn1/2+β

.(2.62)

When we go to Euler products, we find that this expression evaluates to

ζ(1 + α+ β)ζ(1 + 2γ)ζ(1 + γ + δ)ζ(1 + 2δ)
ζ(1 + α+ γ)ζ(1 + α+ δ)ζ(1 + β + γ)ζ(1 + β + δ)

A∆(α, β; γ, δ),(2.63)

where A is analytic if the real parts of α, β, γ, δ are smaller than 1/4 in absolute value; moreover
A∆(0, 0; 0, 0) = 1. Thus, this part is

=
(α+ γ)(α+ δ)(β + γ)(β + δ)

(α+ β)(2γ)(γ + δ)(2δ)
+O(1/ logX).(2.64)

Taking the symmetric sum of four of these terms, arising from the product of the approximate
functional equations of the two L-functions in the numerator, we find that
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Conjecture 2.11 (Conrey, Farmer and Zirbauer [11]). With α, β, γ, δ � 1
log X , we have

1
X∗R∆(α, β; γ, δ) =

1
X∗
∑
d≤X

L∆(1/2 + α, χd)L∆(1/2 + β, χd)
L∆(1/2 + γ, χd)L∆(1/2 + δ, χd)

(2.65)

=
(α+ γ)(α+ δ)(β + γ)(β + δ)

(α+ β)(2γ)(γ + δ)(2δ)

+X−2α (−α+ γ)(−α+ δ)(β + γ)(β + δ)
(−α+ β)(2γ)(γ + δ)(2δ)

+X−2β (α+ γ)(α+ δ)(−β + γ)(−β + δ)
(α− β)(2γ)(γ + δ)(2δ)

−X−2α−2β (−α+ γ)(−α+ δ)(−β + γ)(−β + δ)
(α+ β)(2γ)(γ + δ)(2δ)

+O(1/ logX),

as X → ∞.

3. One-level density

In this section we use the ratios conjecture to compute the one-level density function for zeros
of quadratic Dirichlet L-functions, complete with lower order terms. Özlük and Snyder [38] have
proven such results (assuming the generalized Riemann Hypothesis) for test functions f for which
the support of f̂ is limited. The ratios conjectures imply a result consistent with [38] but with no
constraint on the support of the Fourier transform of the test function.

For simplicity, we assume that:

f(z) is holomorphic throughout the strip |�z| < 2,
is real on the real line and even,(3.1)
and that f(x) � 1/(1 + x2) as x→ ∞.

We consider

S1(f) :=
∑
d≤X

∑
γd

f(γd),(3.2)

where γd denotes the ordinate of a generic zero of L(s, χd) on the half-line (we are assuming that
all of the complex zeros are on the 1/2-line).

We have

S1(f) =
∑
d≤X

1
2πi

(∫
(c)

−
∫

(1−c)

)
L′(s, χd)
L(s, χd)

f(−i(s− 1/2)) ds,(3.3)

where (c) denotes a vertical line from c− i∞ to c+ i∞ and 3/4 > c > 1/2 + 1
log X . The integral on

the c-line is
1
2π

∫ ∞

−∞
f(t− i(c− 1/2))

∑
d≤X

L′(1/2 + (c− 1/2 + it), χd)
L(1/2 + (c− 1/2 + it), χd)

dt.(3.4)
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It follows by the Riemann Hypothesis that on the path of integration (c)

(3.5)
L′(s, χd)
L(s, χd)

� log2(|s|d).

For |t| > X1−ε we estimate the integral using (3.5) and (3.1) and the result is � Xε. By the ratios
conjecture (2.34), if |t| < X1−ε the sum over d in (3.4) is:

∑
d≤X

(
ζ ′(1 + 2r)
ζ(1 + 2r)

+A′
D(r; r) −

(
d

π

)−r Γ(1/4 − r/2)
Γ(1/4 + r/2)

ζ(1 − 2r)AD(−r; r)
)∣∣∣∣

r=c−1/2+it

(3.6)

+O(X1/2+ε).

Since the quantity in (3.6) is � X1+ε for |t| < X1−ε and f(t) � 1
t2

we can extend the integration
in t to infinity. Finally, since the integrand is regular at r = 0, we can move the path of integration
to c = 1/2 and so obtain

1
2π

∫ ∞

−∞
f(t)

∑
d≤X

(
ζ ′(1 + 2it)
ζ(1 + 2it)

+A′
D(it; it) −

(
d

π

)−it Γ(1/4 − it/2)
Γ(1/4 + it/2)

ζ(1 − 2it)AD(−it; it)
)
dt(3.7)

+O(X1/2+ε).

For the integral on the 1− c line, we change variables, letting s→ 1− s, and we use the functional
equation

L′(1 − s, χd)
L(1 − s, χd)

=
X ′(s, χd)
X(s, χd)

− L′(s, χd)
L(s, χd)

(3.8)

where
X ′(s, χd)
X(s, χd)

= − log
d

π
− 1

2
Γ′

Γ

(
1 − s

2

)
− 1

2
Γ′

Γ

(s
2

)
(3.9)

The contribution from the L′/L term is now exactly as before, since f is even. Thus, we obtain

Theorem 3.1. Assuming Conjecture 2.6 and f satisfying (3.1), we have∑
d≤X

∑
γd

f(γd) =
1
2π

∫ ∞

−∞
f(t)

∑
d≤X

(
log

d

π
+

1
2

Γ′

Γ
(1/4 + it/2) +

1
2

Γ′

Γ
(1/4 − it/2) +(3.10)

2
(
ζ ′(1 + 2it)
ζ(1 + 2it)

+A′
D(it; it) −

(
d

π

)−it Γ(1/4 − it/2)
Γ(1/4 + it/2)

ζ(1 − 2it)AD(−it; it)
))

dt

+O(X1/2+ε),

where

AD(−r; r) =
∏
p

(
1 − 1

(p+ 1)p1−2r
− 1
p+ 1

)(
1 − 1

p

)−1

,(3.11)

and

A′
D(r; r) =

∑
p

log p
(p+ 1)(p1+2r − 1)

.(3.12)
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The low-lying zeros of this family of L-functions are expected to display the same statistics as
the eigenvalues of the matrices from USp(2N) chosen with respect to Haar measure. Thus in the
large X limit, the one level density of the scaled zeros will have the form, as proved by Özlük and
Snyder [38],

lim
X→∞

1
X∗
∑
d≤X

∑
γd

f

(
γd

log d
π

2π

)
=
∫ ∞

−∞
f(x)
(

1 − sin(2πx)
2πx

)
dx,(3.13)

where X∗ is the number of terms in the sum (and is proportional to X).

Defining f(t) = g( t log X
2π ) and scaling the variable t from Theorem 3.1 as τ = t log X

2π∑
d≤X

∑
γd

g

(
γd logX

2π

)
=

1
logX

∫ ∞

−∞
g(τ)

∑
d≤X

(
log

d

π
+

1
2

Γ′

Γ

(
1/4 +

iπτ

logX

)
(3.14)

+
1
2

Γ′

Γ

(
1/4 − iπτ

logX

)
+ 2
(
ζ ′(1 + 4iπτ

log X )

ζ(1 + 4iπτ
log X )

+A′
D

(
2πiτ
logX

;
2πiτ
logX

)

−e− 2πiτ
log X

log d
π

Γ(1/4 − iπτ
log X )

Γ(1/4 + iπτ
log X )

ζ

(
1 − 4πiτ

logX

)
AD

(
− 2πiτ

logX
;

2πiτ
logX

)))
dτ

+O(X1/2+ε).

For large X only the log d
π term, the ζ′

ζ term and the final term in the integral contribute, yielding
the asymptotic∑

d≤X

∑
γd

g

(
γd logX

2π

)
∼ 1

logX

∫ ∞

−∞
g(τ)
(
X∗ logX −X∗ logX

2πiτ
+X∗ e−2πiτ

2πiτ
logX

)
dτ.(3.15)

However, since g is an even function, the middle term above drops out and the last term can be
duplicated with a change of sign of τ , leaving

lim
X→∞

1
X∗
∑
d≤X

∑
γd

g

(
γd

log d
π

2π

)
=
∫ ∞

−∞
g(τ)
(

1 +
e−2πiτ

4πiτ
+

e2πiτ

−4πiτ

)
dτ,(3.16)

and resulting in exactly the answer expected.

In much the same way as for Theorem 3.1 we can compute the lower order terms in the one-level
density for the zeros of the functions from the orthogonal family L∆(s, χd) by using (2.61).

Theorem 3.2. Assuming Conjecture 2.9 and with f satisfying (3.1), we have∑
d≤X

∑
γ∆,d

f(γ∆,d) =
1
2π

∫ ∞

−∞
f(t)

∑
d≤X

(
2 log d

2π +
Γ′

Γ
(6 + it) +

Γ′

Γ
(6 − it)(3.17)

+2
(
− ζ ′(1 + 2it)
ζ(1 + 2it)

+
L′

∆(sym2, 1 + 2it)
L∆(sym2, 1 + 2it)

+B′
∆(it; it)

−
(
d

2π

)−2it Γ(6 − it)
Γ(6 + it)

ζ(1 + 2it)L∆(sym2, 1 − 2it)
L∆(sym2, 1)

B∆(−it; it)
)
dt

+O(X1/2+ε)
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where B∆ is defined in (2.56).

In the same way as above, the main terms here give the one-level density of eigenvalues of
matrices from the group SO(2N), which in the limit of large N is 1 + sin 2πx

2πx .

4. Pair-correlation

We show how to use the ratios conjecture to compute the pair-correlation of the zeros of the
Riemann zeta-function, originally conjectured by Montgomery [36], together with lower order (arith-
metic) terms that have been found heuristically by Bogolmony and Keating [3] (see [28] for a more
expository description, [2] for numerical calculation of these lower order terms and [19] for related
rigorous results). When Farmer formulated his original ratio conjecture (2.2) he observed in [16]
that it implied the leading order terms of Montgomery’s pair correlation conjecture. Farmer’s
method is completely different from what we present below.

We want to evaluate the sum

S(f) =
∑

0<γ,γ′<T

f(γ − γ′)(4.1)

for a test function f satisfying (3.1). We rewrite the sum in question in terms of contour integrals.
Let 1/2+ 1

log T < a < b < 3/4 and let C1 be the positively oriented rectangular contour with corners
a, a+ iT, 1−a+ iT, 1−a and let C2 be the rectangular contour with corners b, b+ iT, 1−b+ iT, 1−b.
Then

S(f) =
1

(2πi)2

∫
C1

∫
C2

ζ ′

ζ
(z)

ζ ′

ζ
(w)f(−i(z − w)) dw dz;(4.2)

the point, of course, is that the poles inside the contours are simple poles with residue 1 at the
zeros z = 1/2 + iγ and w = 1/2 + iγ′ of the zeta-function. The integrals along the horizontal sides
are small and may be ignored. Thus, we consider 4 double integrals. We consider each of the 4
double integrals separately; call them I1, . . . , I4, where I1 has vertical parts a and b, I2 has vertical
parts 1 − a and 1 − b, I3 has vertical parts a and 1 − b and I4 has vertical parts 1 − a and b.

It is easy to see using the Riemann Hypothesis that I1 = O(T ε) just by moving the contours to
the right of 1 and integrating term-by-term.

For I2, we use the functional equation ζ′
ζ (s) = χ′

χ (s) − ζ′
ζ (1 − s) for s = w and s = z and find

similarly that

I2 =
1

(2π)2

∫ T

0

∫ T

0

χ′

χ
(1/2 + iu)

χ′

χ
(1/2 + iv)f(u− v) du dv +O(T ε).(4.3)

Using the fact that

χ′

χ
(1/2 + it) = − log

|t|
2π

(
1 +O

(
1
|t|
))

(4.4)
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and that f is even, we see, after the substitution u = v + η, that

I2 =
2

(2π)2

∫ T

0

∫ T

v
log

v

2π
log

u

2π
f(u− v) du dv +O(T ε)(4.5)

=
2

(2π)2

∫ T

0
f(η)

∫ T−η

0
log

v

2π
log

v + η

2π
dv dη +O(T ε).

Recall that f satisfies

(4.6) f(x) � 1
1 + x2

for real x. Letting v → vT in the inner integral above, we have

I2 =
2

(2π)2
T

∫ T

0
f(η)

∫ 1− η
T

0
log

vT

2π
log

vT + η

2π
dv dη +O(T ε).(4.7)

We may extend the upper limit of the inner integral to v = 1, introducing an error term of size
� ∫ T

0 ηf(η) log2 Tdη � log3 T . We can also replace log(vT + η) by log vT with the same error
term. Thus,

I2 =
2

(2π)2
T

∫ T

0
f(η)

∫ 1

0
log2 vT

2π
dv dη +O(T ε)(4.8)

=
1

(2π)2

∫ T

−T
f(η)

∫ T

0
log2 v

2π
dv dη +O(T ε).

Next we consider I3. Letting z = w + η, it is

I3 =
−1

(2πi)2

∫ 1−b+iT

1−b

∫ a+iT

a

ζ ′

ζ
(w)

ζ ′

ζ
(z)f(−i(z − w)) dw dz(4.9)

=
−1

(2π)2i

∫ 1−a−b+iT

1−a−b−iT
f(−iη)

∫ T2

T1

ζ ′

ζ
(a+ it)

ζ ′

ζ
(a+ it+ η) dt dη,

where T1 = max{0,−�η} and T2 = min{T −�η, T}. We use the functional equation

ζ ′

ζ
(a+ η + it) =

χ′

χ
(a+ η + it) − ζ ′

ζ
(1 − a− η − it).(4.10)

The term with the χ′/χ is small as is seen by moving the contour to the right. Thus, we see that

I3 =
1

(2π)2i

∫ 1−a−b+iT

1−a−b−iT
f(−iη)

∫ T2

T1

ζ ′

ζ
(a+ it)

ζ ′

ζ
(1 − a− it− η) dt dη +O(T ε)(4.11)

=
1

(2π)2i

∫ 1−a−b+iT

1−a−b−iT
f(−iη)

∫ T2

T1

ζ ′

ζ
(s+ (a− 1/2))

ζ ′

ζ
(1 − s+ (1/2 − a− η)) dt dη

+O(T ε),
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where s = 1/2 + it. By Theorem 2.5, we have

I3 =
1

(2π)2i

∫ 1−a−b+iT

1−a−b−iT
f(−iη)

∫ T2

T1

((
ζ ′

ζ

)′
(1 − η)+(4.12)

(
t

2π

)η

ζ(1 − η)ζ(1 + η)
∏
p

(1 − 1
p1−η )(1 − 2

p + 1
p1−η )

(1 − 1
p)2

−
∑

p

(
log p

(p1−η − 1)

)2
)
dt dη +O(T 1/2+ε).

Let δ = a + b − 1 and let g(−η, t) be the integrand in the second integral above. We can extend
the range of the inner integration, much as we did for the I2 integral to the interval [0, T ] with an
error term of size � T ε

∫
η |η||f(η)|dη � T ε. Thus, we obtain

I3 =
1

(2π)2i

∫ T

0

∫ −δ+iT

−δ−iT
f(−iη)g(−η, t) dη dt+O(T 1/2+ε).(4.13)

Now we consider I4. Again letting z = w + η, we have

I4 =
1

(2πi)2

∫ 1−a+iT

1−a

∫ b+iT

b

ζ ′

ζ
(w)

ζ ′

ζ
(z)f(−i(z − w)) dz dw(4.14)

=
1

(2π)2i

∫ a+b−1+iT

a+b−1−iT
f(−iη)

∫ T2

T1

ζ ′

ζ
(1 − a+ it)

ζ ′

ζ
(1 − a+ it+ η) dt dη.

We use the functional equation

(4.15)
ζ ′

ζ
(1 − a+ it) =

χ′

χ
(1 − a+ it) − ζ ′

ζ
(a− it).

Again, the contribution of the χ′/χ term is negligible. Thus,

I4 =
1

(2π)2i

∫ a+b−1+iT

a+b−1−iT
f(−iη)

∫ T2

T1

ζ ′

ζ
(a− it)

ζ ′

ζ
(1 − a+ it+ η) dt dη +O(T ε)(4.16)

=
1

(2π)2i

∫ a+b−1+iT

a+b−1−iT
f(−iη)

∫ T2

T1

ζ ′

ζ
(1 − s+ (a− 1/2))

ζ ′

ζ
(s+ (1/2 − a+ η)) dt dη

+O(T ε).

Now, by Theorem 2.5,

I4 =
1

(2π)2i

∫ a+b−1+iT

a+b−1−iT
f(−iη)

∫ T2

T1

((
ζ ′

ζ

)′
(1 + η)+(4.17)

(
t

2π

)−η

ζ(1 − η)ζ(1 + η)
∏
p

(1 − 1
p1+η )(1 − 2

p + 1
p1+η )

(1 − 1
p)2

−
∑

p

(
log p

(p1+η − 1)

)2
)
dt dη +O(T 1/2+ε).
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Using the notation introduced after the calculation of I3, and again extending the range of the
integration in the inner integral, we can write the expression for I4 as

I4 =
1

(2π)2i

∫ T

0

∫ δ+iT

δ−iT
f(−iη)g(η, t) dη dt+O(T 1/2+ε).(4.18)

Combining this with what we found for I3 we have, after a change of variables,

I3 + I4 =
2

(2π)2i

∫ T

0

∫ δ+iT

δ−iT
f(iη)g(η, t) dη dt+O(T 1/2+ε).(4.19)

Now let

A(η) =
∏
p

(1 − 1
p1+η )(1 − 2

p + 1
p1+η )

(1 − 1
p)2

(4.20)

and

B(η) =
∑

p

(
log p

(p1+η − 1)

)2

(4.21)

so that

g(η, t) =
(
ζ ′

ζ

)′
(1 + η) +

(
t

2π

)−η

ζ(1 − η)ζ(1 + η)A(η) −B(η).(4.22)

Near 0, we see that (note that A′(0) = 0),

g(η, t) =
log t

2π

η
+O(1).(4.23)

We move the path of integration in η to the imaginary axis from −T to T with a principal value
as we pass through 0; the contribution from 1/2 of the residue from the pole of g at η = 0 is

(4.24) π

∫ T

0
f(0) log

t

2π
dt.

Combining our expressions for I1, . . . , I4, and changing η into ir we have

Theorem 4.1. Assuming Conjecture 2.1, and with f satisfying (3.1), we have

∑
γ,γ′≤T

f(γ − γ′) =
1

(2π)2

∫ T

0

(
2πf(0) log

t

2π
+
∫ T

−T
f(r)
(

log2 t

2π
+ 2
((

ζ ′

ζ

)′
(1 + ir)(4.25)

+
(
t

2π

)−ir

ζ(1 − ir)ζ(1 + ir)A(ir) −B(ir)
))

dr

)
dt+O(T 1/2+ε);

here the integral is to be regarded as a principal value near r = 0,

A(η) =
∏
p

(1 − 1
p1+η )(1 − 2

p + 1
p1+η )

(1 − 1
p)2

,(4.26)
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and

B(η) =
∑

p

(
log p

(p1+η − 1)

)2

.(4.27)

We believe that this formula, originally found by Bogomolny and Keating [3], is very accurate,
indeed, down to a square root error term. It includes all of the lower order terms that arise from
arithmetical considerations and should include all of the fluctuations found in any of the extensive
numerical experiments that have been done. We have not scaled any of the terms here so that
terms of different scales are shown all at once.

To see the leading order term from Montgomery’s pair-correlation conjecture, let L = log T
2π ,

g(x L
2π ) = f(x), and scale the variable r in the inner integral in Theorem 4.1 as y = r L

2π :∑
γ,γ′≤T

g((γ − γ′) L
2π )(4.28)

=
1

(2π)2

∫ T

0

(
2πg(0) log

t

2π
+

2π
L

∫ T L
2π

−T L
2π

g(y)
(

log2 t

2π
+ 2
((

ζ ′

ζ

)′
(1 + 2πiy

L )

+e−2πiy
log(t/2π)

L ζ(1 − 2πiy
L )ζ(1 + 2πiy

L )A(2πiy
L ) −B(2πiy

L )
))

dy

)
dt+O(T 1/2+ε).

For large T , only the log2 t
2π and the two terms containing zeta functions contribute, so we have

the asymptotic∑
γ,γ′≤T

g((γ − γ′) L
2π ) ∼ 1

(2π)2

∫ T

0

(
2πg(0) log

t

2π
(4.29)

+
2π
L

∫ T L
2π

−T L
2π

g(y)
(

log2 t

2π
− L2

2π2y2
+ e−2πiy

log(t/2π)
L

(
L2

2π2y2

)))
dy

)
dt.

Integrating over t, we find that∑
γ,γ′≤T

g((γ − γ′) L
2π ) ∼ T

2π
log T

2π

(
g(0) +

∫ ∞

−∞
g(y)
(

1 − 1
2π2y2

+
cos(2πy)
2π2y2

)
dy

)
(4.30)

=
T

2π
log T

2π

(
g(0) +

∫ ∞

−∞
g(y)
(

1 −
(

sinπy
πy

)2)
dy

)
.

The expression 1 − (sin2 πy)/(πy)2 is exactly the limiting two-point correlation function predicted
by Montgomery [36].

5. Mollifying second moments

The technique of mollifying is used for computing information about zeros in families of L-
functions, for example for obtaining lower bounds for the proportion of zeros on the critical line or
for showing that not many L-functions in a family vanish at the central point. The general set up
is that we have a family of L-functions to average over. Before performing the average we multiply
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by a Dirichlet polynomial whose coefficients arise from the inverses of the members of the family,
multiplied by a smoothing function. We will compute one example arising from each of the three
basic symmetry types.

As we discussed in the introduction, mollifier calculations are in general quite complicated. The
ratios conjectures give a relatively easy way to obtain the relevant asymptotic formula. Thus,
they can serve as a guide as to whether to embark on a calculation and a check as to whether a
calculation is correct. They also provide evidence that mean-value formulas which can be proven for
short mollifiers remain correct for long mollifiers. So, these calculations are valuable even though
we assume RH.

5.1. A Unitary example. We start with the Riemann zeta-function in t-aspect as a prototype of
a unitary family. So, let

M(s, P ) =
∑
n≤y

µ(n)P
(

log y/n
log y

)
ns

(5.1)

where µ(n) is the Möbius function,

(5.2)
1
ζ(s)

=
∞∑

n=1

µ(n)
ns

,

and P is a polynomial satisfying P (0) = 0. Also,

(5.3) y = T θ

where, classically, the following results have been proven for θ < 1/2, and, with a more modern
treatment, for θ < 4/7 [7]. Conjecturally, the asymptotic formula we obtain should be valid for any
fixed θ, no matter how large. We want to consider

I =
∫ T

0
|ζ(1/2 + it)|2|M(1/2 + it, P )|2 dt,(5.4)

and more generally

Iζ(α, β, P1, P2) =
∫ T

0
ζ(s+ α)ζ(1 − s+ β)M(s, P1)M(1 − s, P2) dt,(5.5)

where s = 1/2 + it. Also, it is useful to discuss the scaled and differentiated form of this quantity,
namely,

Iζ(Q1, Q2, P1, P2) := Q1

( −1
log T

d

dα

)
Q2

( −1
log T

d

dβ

)
Iζ(α, β, P1, P2)

∣∣∣∣
α=β=0

,(5.6)

for polynomials Q1 and Q2.

To relate this to our ratios conjecture we note that by Perron’s formula

1
2πi

∫
(c)
xz dz

zm+1
=
{ logm x

m! if x > 1
0 if 0 < x < 1

(5.7)
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where c > 0. Therefore, if P (x) =
∑

m≥1 pmx
m, then

M(s, P ) =
∑
m≥1

pmm!
logm y

1
2πi

∫
(c)

yz

zm+1

1
ζ(s+ z)

dz.(5.8)

This expression leads us to

Iζ(α, β, P1, P2) =
∑
m,n

p1,mm!p2,nn!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1
Rζ(α, β, w, z) dw dz,(5.9)

where c1 = c2 = 1/ log y, and Rζ is defined at (2.1). Using the ratios conjecture 2.1, we see that
the double integral above is equal to

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1

∫ T

0

(
ζ(1 + α+ β)ζ(1 + w + z)
ζ(1 + α+ z)ζ(1 + β + w)

Aζ(α, β, w, z)(5.10)

+
(
t

2π

)−α−β ζ(1 − α− β)ζ(1 + w + z)
ζ(1 − β + z)ζ(1 − α+ w)

Aζ(−β,−α,w, z)
)
dt dw dz +O(T 1/2+ε)

From this formula we could work out a precise conjecture with all lower order terms included.
However, we are mainly interested in the leading order term when α, β ≈ 1/ log T . The leading
order terms come from the residues of the poles in w and z at zero; to obtain these we use arguments
similar to the proof of the Prime Number Theorem to move the paths of integration slightly to
the left of zero, allowing us to replace the contours of z and w with circles of radius 1/ log T and
2/ log T respectively. The error term is then certainly 1/ log T smaller than the main term. Also
we use A = 1 +O(1/ log T ) and ζ(1 + x) = 1/x+O(1) for small x and large T . Then we have

Iζ(α, β, P1, P2) =
∑
m,n

p1,mm!p2,nn!
logm+n y

1
(2πi)2

∮ ∮
yw+z

wm+1zn+1

×
∫ T

0

(
(α+ z)(β + w)
(α+ β)(w + z)

+
(
t

2π

)−α−β (−β + z)(−α+ w)
(−α− β)(w + z)

)
dt dw dz

+O(T/ log T ).(5.11)

It is convenient to write, for �(w + z) > 0,

(5.12)
yw+z

w + z
=
∫ y

0
uw+z du

u

so that the above becomes

Iζ(α, β, P1, P2) =
1

α+ β

∑
m,n

p1,mm!p2,nn!
logm+n y

∫ T

0

∫ y

1

1
(2πi)2

∮ ∮
uw+z

wm+1zn+1

×
(

(α+ z)(β + w) −
(
t

2π

)−α−β

(−β + z)(−α+ w)

)
dw dz

du

u
dt

+O(T/ log T );(5.13)

note that the integration in u is for u ≥ 1 since for u < 1 the integrals in z and w are 0.
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Now ∑
m

p1,mm!
logm y

1
2πi

∮
uw

wm+1
dw = P1

(
log u
log y

)
(5.14)

and ∑
m

p1,mm!
logm y

1
2πi

∮
uw

wm
dw =

1
log y

P ′
1

(
log u
log y

)
.(5.15)

Therefore,

Iζ(α, β, P1, P2) =
T

α+ β

∫ y

1

((
α+

d

dz

)(
β +

d

dw

)
− T−α−β

(
− β +

d

dz

)(
− α+

d

dw

))

×P1

(
w + log u

log y

)
P2

(
z + log u

log y

)∣∣∣∣
w=z=0

du

u
+O(T/ log T ).(5.16)

Letting u = yr, we deduce that

Iζ(α, β, P1, P2) =
T log y
α+ β

((
α+

d

dz

)(
β +

d

dw

)
− T−α−β

(
− β +

d

dz

)(
− α+

d

dw

))

×
∫ 1

0
P1

(
w

log y
+ r

)
P2

(
z

log y
+ r

)
dr

∣∣∣∣
w=z=0

+O(T/ log T ).(5.17)

It is useful to rewrite the main term of this as

T log y(1 − T−α−β)
α+ β

(
− β +

d

dz

)(
− α+

d

dw

)∫ 1

0
P1

(
w

log y
+ r

)
P2

(
z

log y
+ r

)
dr

∣∣∣∣
w=z=0

+
T log y
α+ β

(α+ β)
(
d

dw
+

d

dz

)∫ 1

0
P1

(
w

log y
+ r

)
P2

(
z

log y
+ r

)
dr

∣∣∣∣
w=z=0

.(5.18)

The second term here is = TP1(1)P2(1). For the first term, we write

(5.19)
1 − T−α−β

α+ β
= log T

∫ 1

0
T−u(α+β) du

and note, for example, that log y(−α + d/dw)P1(w/ log y + r)|w=0 = (d/dw)y−αwP1(w + r)|w=0.
Finally, recalling that y = T θ, we have

Iζ(α, β, P1, P2) = TP1(1)P2(1)(5.20)

+
T

θ

d

dw

d

dz
y−αw−βz

∫ 1

0

∫ 1

0
T−(α+β)uP1(w + r)P2(z + r) dr du

∣∣∣∣
w=z=0

+O(T/ log T ).

This formula appears in [7], page 11. To compute Iζ(Q1, Q2, P1, P2) we observe, for example, that

Q1

( −1
log T

d

dα

)
y−αwT−αu

∣∣∣∣
α=0

= Q1(wθ + u).(5.21)

Thus, we have
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Theorem 5.1. Let P1, P2, Q1 and Q2 be polynomials, with P1(0) = P2(0) = 0. Assuming the ratios
conjecture 2.1, for any fixed θ > 0, we have (using s = 1/2 + it)

1
T

∫ T

0
Q1

( −1
log T

d

dα

)
Q2

( −1
log T

d

dβ

)
ζ(s+ α)ζ(1 − s+ β)M(s, P1)M(1 − s, P2) dt

∣∣∣∣
α=β=0

(5.22)

= P1(1)P2(1)Q1(0)Q2(0)

+
d

dw

d

dz

1
θ

∫ 1

0

∫ 1

0
P1(w + r)P2(z + r)Q1(wθ + u)Q2(zθ + u) dr du

∣∣∣∣
w=z=0

+O(1/ log T )
= P1(1)P2(1)Q1(0)Q2(0)

+
1
θ

∫ 1

0

∫ 1

0

(
P ′

1(r)Q1(u) + θP1(r)Q′
1(u)
)(
P ′

2(r)Q2(u) + θP2(r)Q′
2(u)
)
dr du

+O(1/ log T ).

As remarked earlier, if θ < 4/7, then this is a theorem of [7] which generalizes work of Levinson
[33]. Farmer [16] was the first to propose that this formula should hold for any fixed value of θ > 0;
he calls this the “long mollifiers” conjecture. Other examples of mollifying a second moment in a
unitary family are in [17], [25], and [35].

5.2. A symplectic example. We consider mollifying in the family of L-functions L(s, χd) asso-
ciated with real Dirichlet characters. Let

M(χd, P ) =
∑
n≤y

µ(n)χd(n)P
(

log y
n

log y

)
n1/2

,(5.23)

where P is a polynomial satisfying P (0) = P ′(0) = 0 and y = Xθ. Consider the second mollified
moment

M(α, β, P1, P2) =
∑
d≤X

L(1/2 + α, χd)L(1/2 + β, χd)M(χd, P1)M(χd, P2).(5.24)

As in our previous example, we can express

M(χd, P ) =
∑

n

pnn!
logn y

1
2πi

∫
(c)

yw

L(1/2 + w,χd)wn+1
dw,(5.25)

where the pn are the coefficients of the polynomial P . So, letting pm,1 and pn,2 be the coefficients
of P1 and P2 we have

M(α, β, P1, P2)

=
∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1

∑
d≤X

L(1/2 + α, χd)L(1/2 + β, χd)
L(1/2 + w,χd)L(1/2 + z, χd)

dw dz.(5.26)
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For the sum over d we substitute from (2.39); we find that

1
X∗M(α, β, P1, P2) ∼

∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1
(5.27)

(
(α+ w)(α+ z)(β + w)(β + z)

4αβ(α+ β)(w + z)
−X−α (−α+ w)(−α+ z)(β + w)(β + z)

4αβ(−α+ β)(w + z)

−X−β (α+ w)(α+ z)(−β + w)(−β + z)
4αβ(α− β)(w + z)

−X−α−β (−α+ w)(−α+ z)(−β + w)(−β + z)
4αβ(α+ β)(w + z)

)
dw dz.

For simplicity from now on we write asymptotic formulas but, as in the previous section, they could
all be replaced by equality with an error term that is one log smaller than the main term.

As before, we replace yw+z

w+z by
∫ y
1 u

w+z du
u . Then the poles are all at w = 0 and z = 0 and only

the numerators in the last set of brackets depend on w and z. Removing the factor (w + z) from
the denominator, we expand this bracket into an expression that is a polynomial of total degree 4
in w and z with maximum degree 2 in each variable:

1
4αβ

(
1 −X−α−β

α+ β
+X−α 1 −Xα−β

α− β

)
w2z2 +

(1 −X−α)(1 −X−β)
4αβ

(w2z + wz2)

+
(

1 −X−α−β

4(α+ β)
−X−α 1 −Xα−β

4(α− β)

)
(w2 + z2)

+
(

(α+ β)(1 −X−α−β)
4αβ

+
(α− β)(X−α −X−β)

4αβ

)
wz +

1
4
(1 +X−α)(1 +X−β)(w + z)

+
αβ(1 −X−α−β)

4(α+ β)
+X−ααβ(1 −Xα−β)

4(α− β)
.(5.28)

Using the analogue of formulas (5.14) and (5.15), we see that we now should replace w2z2 in this
expression by

1
log4 y

∫ y

1
P ′′

1

(
log u
log y

)
P ′′

2

(
log u
log y

)
du

u
=

1
log3 y

∫ 1

0
P ′′

1 (r)P ′′
2 (r) dr.(5.29)

Likewise, w2z + wz2 should be replaced by

1
log2 y

∫ 1

0

(
P ′′

1 (r)P ′
2(r) + P ′

1(r)P
′′
2 (r)
)
dr,(5.30)

w2 + z2 by

1
log y

∫ 1

0

(
P ′′

1 (r)P2(r) + P1(r)P ′′
2 (r)
)
dr,(5.31)

wz by ∫ 1
0 P

′
1(r)P

′
2(r) dr

log y
,(5.32)
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w + z by

∫ 1

0

(
P ′

1(r)P2(r) + P1(r)P ′
2(r)
)
dr,(5.33)

and the constant term by

log y
∫ 1

0
P1(r)P2(r) dr.(5.34)

In this way, we find that

4
X∗M(α, β, P1, P2) ∼ 1

αβ

(
1 −X−α−β

α+ β
+X−α 1 −Xα−β

α− β

) ∫ 1
0 P

′′
1 (r)P ′′

2 (r) dr
log3 y

(5.35)

+
(1 −X−α)(1 −X−β)

αβ

∫ 1
0

(
P ′′

1 (r)P ′
2(r) + P ′

1(r)P
′′
2 (r)
)
dr

log2 y

+
(

1 −X−α−β

(α+ β)
−X−α 1 −Xα−β

(α− β)

) ∫ 1
0

(
P ′′

1 (r)P2(r) + P1(r)P ′′
2 (r)
)
dr

log y

+
(

(1 +X−α)
1 −X−β

β
+ (1 +X−β)

1 −X−α

α

) ∫ 1
0 P

′
1(r)P

′
2(r) dr

log y

+(1 +X−α)(1 +X−β)
∫ 1

0

(
P ′

1(r)P2(r) + P1(r)P ′
2(r)
)
dr

+
(
αβ(1 −X−α−β)

α+ β
+X−ααβ(1 −Xα−β)

α− β

)
log y

∫ 1

0
P1(r)P2(r) dr.

This gives our final formula for M(α, β, P1, P2).

If, instead, we consider the mollified second moment of ξ(1/2, χd), we can put our answer into a
more symmetric form. Recall that by the functional equation (2.26) we have

ξ(1/2 + α, χd) :=
(
d

π

)α/2

Γ
(

1
4

+
α

2

)
L(1/2 + α, χd) = ξ(1/2 − α, χd).(5.36)

Therefore, if we multiply (5.35) by X(α+β)/2 we will obtain the asymptotic formula for the mollified
second moment of ξ:

N (α, β, P1, P2) :=
∑
d≤X

ξ(1/2 + α, χd)ξ(1/2 + β, χd)M(χd, P1)M(χd, P2).(5.37)
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We have

4
X∗N (α, β, P1, P2) ∼ 1

αβ

(
X

α+β
2 −X

−(α+β)
2

α+ β
− X

α−β
2 −X

β−α
2

α− β

) ∫ 1
0 P

′′
1 (r)P ′′

2 (r) dr
log3 y

+
(X

α
2 −X

−α
2 )(X

β
2 −X

−β
2 )

αβ

∫ 1
0

(
P ′′

1 (r)P ′
2(r) + P ′

1(r)P
′′
2 (r)
)
dr

log2 y

+

(
X

α+β
2 −X

−(α+β)
2

(α+ β)
+
X

α−β
2 −X

β−α
2

(α− β)

) ∫ 1
0

(
P ′′

1 (r)P2(r) + P1(r)P ′′
2 (r)
)
dr

log y

+

(
(X

α
2 +X

−α
2 )

X
β
2 −X

−β
2

β
+ (X

β
2 +X

−β
2 )
X

α
2 −X

−α
2

α

) ∫ 1
0 P

′
1(r)P

′
2(r) dr

log y
(5.38)

+(X
α
2 +X

−α
2 )(X

β
2 +X

−β
2 )
∫ 1

0

(
P ′

1(r)P2(r) + P1(r)P ′
2(r)
)
dr

+

(
αβ(X

α+β
2 −X

−(α+β)
2 )

α+ β
− αβ(X

α−β
2 −X

β−α
2 )

α− β

)
log y

∫ 1

0
P1(r)P2(r) dr.

We introduce a scaling, writing α = 2a/ logX and β = 2b/ logX. Then it is not difficult, remem-
bering that y = Xθ, to see that the above can be rewritten as

4
X∗N (α, β, P1, P2) ∼ 1

2θ3

∫ 1

0

sinh au
a

sinh bu
b

du

∫ 1

0
P ′′

1 (r)P ′′
2 (r) dr

+
1
θ2

sinh a
a

sinh b
b

∫ 1

0

(
P ′′

1 (r)P ′
2(r) + P ′

1(r)P
′′
2 (r)
)
dr

+
2
θ

∫ 1

0
cosh au cosh bu du

∫ 1

0

(
P ′′

1 (r)P2(r) + P1(r)P ′′
2 (r)
)
dr

+
2
θ

(
cosh a sinh b

b
+

cosh b sinh a
a

)∫ 1

0
P ′

1(r)P
′
2(r) dr(5.39)

+4 cosh a cosh b
∫ 1

0

(
P ′

1(r)P2(r) + P1(r)P ′
2(r)
)
dr

+8θab
∫ 1

0
sinh au sinh bu du

∫ 1

0
P1(r)P2(r) dr.

We now apply Q1

(
d
da

)
Q2

(
d
db

)
to this expression to obtain

N (Q1, Q2, P1, P2) := Q1

(
d

da

)
Q2

(
d

db

)
N
(

2a
logX

,
2b

logX
,P1, P2

) ∣∣∣∣
a=b=0

.(5.40)
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We may assume thatQ1 andQ2 are even functions, since for an odd number r we have ξ(r)(1/2, χd) =
0. To perform this calculation, we observe, for example, that

Q1

(
d

da

)
Q2

(
d

db

)∫ 1

0

sinh au
a

sinh bu
b

du

∣∣∣∣
a=b=0

(5.41)

= Q1

(
d

da

)
Q2

(
d

db

)∫ 1

0

∫ u

0
cosh at1 dt1

∫ u

0
cosh bt2 dt2 du

∣∣∣∣
a=b=0

=
1
4

∫ 1

0

∫ u

0
(Q1(t1) +Q1(−t1)) dt1

∫ u

0
(Q2(t2) +Q2(−t2)) dt2 du

=
∫ 1

0
Q̃1(u)Q̃2(u) du,

where we have used the notation

Q̃(u) =
∫ u

0
Q(t) dt.(5.42)

By similar, but easier, calculations we find that

4
X∗N (Q1, Q2, P1, P2) ∼ 1

2θ3

∫ 1

0
Q̃1(u)Q̃2(u) du

∫ 1

0
P ′′

1 P
′′
2 (r) dr

+
1
θ2
Q̃1(1)Q̃2(1)

∫ 1

0

(
P ′′

1 (r)P ′
2(r) + P ′

1(r)P
′′
2 (r)
)
dr

+
2
θ

∫ 1

0
Q1(u)Q2(u) du

∫ 1

0

(
P ′′

1 (r)P2(r) + P1(r)P ′′
2 (r)
)
dr

+
2
θ

(
Q1(1)Q̃2(1) + Q̃1(1)Q2(1)

)∫ 1

0
P ′

1(r)P
′
2(r) dr(5.43)

+4Q1(1)Q2(1)
∫ 1

0

(
P ′

1(r)P2(r) + P1(r)P ′
2(r)
)
dr

+8θ
∫ 1

0
Q′

1(u)Q
′
2(u) du

∫ 1

0
P1(r)P2(r) dr.

The right hand side here can be written in a more compact form as

1
2θ

∫ 1

0

∫ 1

0

(
1
θ
P ′′

1 (r)Q̃1(u) − 4θP1(r)Q′
1(u)
)(

1
θ
P ′′

2 (r)Q̃2(u) − 4θP2(r)Q′
2(u)
)
du dr(5.44)

+
(

1
θ
P ′

1(1)Q̃1(1) + 2P1(1)Q1(1)
)(

1
θ
P ′

2(1)Q̃2(1) + 2P2(1)Q2(1)
)
.

To verify this assertion we need to use identities which follow from integration-by-parts, such as∫ 1

0

(
P ′

1(r)P2(r) + P1(r)P ′
2(r)
)
dr = P1(1)P2(1),(5.45)

∫ 1

0

(
P ′′

1 (r)P ′
2(r) + P ′

1(r)P
′′
2 (r)
)
dr = P ′

1(1)P ′
2(1),(5.46)
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0
P ′′

1 (r)P2(r) dr = P ′
1(1)P2(1) −

∫ 1

0
P ′

1(r)P
′
2(r) dr,(5.47)

and

∫ 1

0
Q̃1(u)Q′

2(u) du = Q̃1(1)Q2(1) −
∫ 1

0
Q1(u)Q2(u) du.(5.48)

In the last equation note that we have used Q̃(0) = 0.

Theorem 5.2. Assuming Conjecture 2.8, we have for even polynomials Q1 and Q2, and P1 and
P2 polynomials satisfying P1(0) = P ′

1(0) = P2(0) = P ′
2(0) = 0, and y = Xθ with any θ > 0,

Q1

(
2

logX
d

dα

)
Q2

(
2

logX
d

dβ

)∑
d≤X

ξ(1/2 + α, χd)ξ(1/2 + β, χd)M(χd, P1)M(χd, P2)
∣∣∣∣
α=β=0

= X∗
(

1
8θ

∫ 1

0

∫ 1

0

(
1
θ
P ′′

1 (r)Q̃1(u) − 4θP1(r)Q′
1(u)
)(

1
θ
P ′′

2 (r)Q̃2(u) − 4θP2(r)Q′
2(u)
)
du dr

+
1
4

(
1
θ
P ′

1(1)Q̃1(1) + 2P1(1)Q1(1)
)(

1
θ
P ′

2(1)Q̃2(1) + 2P2(1)Q2(1)
)

+O(1/ logX)
)
.(5.49)

Examples of second moment mollifying in a symplectic family occur in [40] and [15].

5.3. An orthogonal example. Here we compute

M∆(α, β;P1, P2) :=
∑
d≤X

L∆(1/2 + α, χd)L∆(1/2 + β, χd)M∆(χd, P1)M∆(χd, P2),(5.50)

where

M∆(χd, P ) :=
∑
m≤y

µ∆(m)χd(m)P
(

log y
m

log y

)
m1/2

.(5.51)

As in equation (5.26), we have

M∆(α, β, P1, P2)

=
∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1

∑
d≤X

L∆(1/2 + α, χd)L∆(1/2 + β, χd)
L∆(1/2 + w,χd)L∆(1/2 + z, χd)

dw dz.(5.52)
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Using (2.65) leads to

M∆(α, β, P1, P2) ∼ 1
X∗
∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+14wz(w + z)(
(α+ w)(α+ z)(β + w)(β + z)

(α+ β)

+X−2α (−α+ w)(−α+ z)(β + w)(β + z)
(−α+ β)

(5.53)

+X−2β (α+ w)(α+ z)(−β + w)(−β + z)
(α− β)

−X−2α−2β (−α+ w)(−α+ z)(−β + w)(−β + z)
(α+ β)

)
dw dz.

We expand the brackets into powers of w and z yielding

(
1 −X−2α−2β

α+ β
− X−2α −X−2β

α− β

)
w2z2(5.54)

+(1 +X−2α)(1 +X−2β)(w2z + wz2)

+
(
αβ(1 −X−2α−2β)

α+ β
+
αβ(X−2α −X−2β)

α− β

)
(w2 + z2)

+
(

(α+ β)(1 −X−2α−2β) − (α− β)(X−2α −X−2β)
)
wz

+αβ(1 −X−2α)(1 −X−2β)(w + z)

+
(
α2β2(1 −X−2α−2β)

α+ β
− α2β2(X−2α −X−2β)

α− β

)
.

As we did in the other cases, we replace yw+z

w+z by
∫ y
1 u

w+z du
u . In a similar manner to (5.29), we

evaluate the sums over m and n using

∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

∫ y

1

uw+z

wm+1zn+1wz

du

u
dw dz(5.55)

= log2 y

∫ y

1
P̃1

(
log u
log y

)
P̃2

(
log u
log y

)
du

u
,

∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

∫ y

1

uw+z

wm+1zn+1

du

u
dw dz(5.56)

=
∫ y

1
P1

(
log u
log y

)
P2

(
log u
log y

)
du

u
,
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and, in general,

∑
m,n

pm,1m!pn,2n!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

∫ y

1

uw+zwazb

wm+1zn+1wz

du

u
dw dz(5.57)

= (log y)2−a−b

∫ y

1
P

(a−1)
1

(
log u
log y

)
P

(b−1)
2

(
log u
log y

)
du

u

= (log y)3−a−b

∫ 1

0
P

(a−1)
1 (t)P (b−1)

2 (t) dt,

where P (a) means the ath derivative of P ; if a < 0 then it means the (−a)th integral of P , so that,
for example, P (−1) = P̃ . Inputting this into our expression for M∆ leads to

4
X∗M∆(α, β, P1, P2)

∼ 1
log y

(
1 −X−2α−2β

α+ β
− X−2α −X−2β

α− β

)∫ 1

0
P ′

1(t)P
′
2(t) dt

+(1 +X−2α)(1 +X−2β)
∫ 1

0

(
P1(t)P ′

2(t) + P ′
1(t)P2(t)

)
dt

+ log y
(
αβ(1 −X−2α−2β)

α+ β
+
αβ(X−2α −X−2β)

α− β

)∫ 1

0

(
P ′

1(t)P̃2(t) + P̃1(t)P ′
2(t)
)
dt(5.58)

+ log y
(

(α+ β)(1 −X−2α−2β) − (α− β)(X−2α −X−2β)
)∫ 1

0
P1(t)P2(t) dt

+ log2 y αβ(1 −X−2α)(1 −X−2β)
∫ 1

0

(
P̃1(t)P2(t) + P1(t)P̃2(t)

)
dt

+ log3 y

(
α2β2(1 −X−2α−2β)

α+ β
− α2β2(X−2α −X−2β)

α− β

)∫ 1

0
P̃1(t)P̃2(t) dt.

We want to compare mollifying in an orthogonal family with that in a symplectic family. To this
end, we consider, as we did for the symplectic family, mollifying the xi-functions. In this situation
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it just means multiplying the above result by Xα+β . This gives

4
X∗
∑
d≤X

ξ∆(1/2 + α, χd)ξ∆(1/2 + β, χd)M∆(χd, P1)M∆(χd, P2)

∼ 1
log y

(
Xα+β −X−α−β

α+ β
+
Xα−β −Xβ−α

α− β

)∫ 1

0
P ′

1(t)P
′
2(t) dt

+(Xα +X−α)(Xβ +X−β)
∫ 1

0

(
P1(t)P ′

2(t) + P ′
1(t)P2(t)

)
dt

+ log y
(
αβ(Xα+β −X−α−β)

α+ β
− αβ(Xα−β −Xβ−α)

α− β

)∫ 1

0

(
P ′

1(t)P̃2(t) + P̃1(t)P ′
2(t)
)
dt(5.59)

+ log y
(

(α+ β)(Xα+β −X−α−β) + (α− β)(Xα−β −Xβ−α)
)∫ 1

0
P1(t)P2(t) dt

+ log2 y αβ(Xα −X−α)(Xβ −X−β)
∫ 1

0

(
P̃1(t)P2(t) + P1(t)P̃2(t)

)
dt

+ log3 y

(
α2β2(Xα+β −X−α−β)

α+ β
+
α2β2(Xα−β −Xβ−α)

α− β

)∫ 1

0
P̃1(t)P̃2(t) dt.

If we now scale, letting α = a/ logX and β = b/ logX, and continuing our y = Xθ convention,
then we can rewrite the above as

4
X∗
∑
d≤X

ξ∆

(
1
2

+
a

logX
,χd

)
ξ∆

(
1
2

+
b

logX
,χd

)
M∆(χd, P1)M∆(χd, P2)

∼ 2
θ

(
sinh(a+ b)
a+ b

+
sinh(a− b)
a− b

)∫ 1

0
P ′

1(t)P
′
2(t) dt

+4 cosh a cosh b
∫ 1

0

(
P1(t)P ′

2(t) + P ′
1(t)P2(t)

)
dt

+θ
(

2ab sinh(a+ b)
a+ b

− 2ab sinh(a− b)
a− b

)∫ 1

0

(
P ′

1(t)P̃2(t) + P̃1(t)P ′
2(t)
)
dt(5.60)

+θ
(

2(a+ b) sinh(a+ b) + 2(a− b) sinh(a− b)
)∫ 1

0
P1(t)P2(t) dt

+θ2 4ab sinh a sinh b
∫ 1

0

(
P̃1(t)P2(t) + P1(t)P̃2(t)

)
dt

+θ3

(
2a2b2 sinh(a+ b)

a+ b
+

2a2b2 sinh(a− b)
a− b

)∫ 1

0
P̃1(t)P̃2(t) dt.
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We now apply Q1( d
da)Q2( d

db)|a=b=0 to both sides of this expression; we assume that Q1 and Q2 are
even. We use the notation M∆(Q1, Q2, P1, P2) as in the symplectic example. Thus,

4
X∗M∆(Q1, Q2, P1, P2)

∼ 4
θ

∫ 1

0
Q1(u)Q2(u) du

∫ 1

0
P ′

1(t)P
′
2(t) dt

+4Q1(1)Q2(1)
∫ 1

0

(
P1(t)P ′

2(t) + P ′
1(t)P2(t)

)
dt

+4θ
∫ 1

0
Q′

1(u)Q
′
2(u) du

∫ 1

0

(
P ′

1(t)P̃2(t) + P̃1(t)P ′
2(t)
)
dt(5.61)

+4θ(Q1(1)Q′
2(1) +Q′

1(1)Q2(1))
∫ 1

0
P1(t)P2(t) dt

+4θ2 Q′
1(1)Q′

2(1)
∫ 1

0

(
P̃1(t)P2(t) + P1(t)P̃2(t)

)
dt

+4θ3

∫ 1

0
Q′′

1(u)Q
′′
2(u) du

∫ 1

0
P̃1(t)P̃2(t) dt.

This expression can be simplified to obtain

Theorem 5.3. Assuming Conjecture 2.11, with even polynomials Q1, Q2, and polynomials P1, P2,
satisfying P1(0) = P2(0) = 0, and using y = Xθ, we have for arbitrary θ,

1
X∗Q1

(
1

logX
d

dα

)
Q2

(
1

logX
d

dβ

)
(5.62)

×
∑
d≤X

ξ∆(1/2 + α, χd)ξ∆(1/2 + β, χd)M∆(χd, P1)M∆(χd, P2)
∣∣∣∣
α=β=0

=
1
θ

∫ 1

0

∫ 1

0

(
P ′

1(t)Q1(u) − θ2P̃1(t)Q′′
1(u)
)(

P ′
2(t)Q2(u) − θ2P̃2(t)Q′′

2(u)
)
dt du

+
(
P1(1)Q1(1) + θP̃1(1)Q′

1(1)
)(

P2(1)Q2(1) + θP̃2(1)Q′
2(1)
)

+θ
(
Q′

1(0)Q2(0)
∫ 1

0
P̃1(t)P ′

2(t)dt+Q1(0)Q′
2(0)
∫ 1

0
P ′

1(t)P̃2(t)dt
)

+O(1/ logX).

Examples of second moment mollifying in an orthogonal family occur in [26] and [31]; in [32] a
fourth moment mollification is performed.

6. Mollifying the kth moment of ζ(s)

Chris Hughes has unpublished notes giving an asymptotic formula for∫ T

0
|ζ(1/2 + it)|4|A(1/2 + it)|2 dt(6.1)
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where

A(s) =
∑
n≤y

an

ns
(6.2)

is an arbitrary Dirichlet polynomial and where y = T θ with θ < 5/27. For applications to zeros of
ζ(s) it would extremely useful to specialize this formula to the case that A(s) = M(s) is a mollifying
polynomial, but this would still involve a lot of work. Via ratios we produce a conjectural formula
which can serve as a check against the more complicated rigorous proof via Hughes’ formula. There
are (at least) two obvious choices for a mollifying polynomialM(s). One isM(s) = M1(s, P )2 where

M1(s, P ) =
∑
n≤y

µ(n)P
(

log y
n

log y

)
ns

(6.3)

with y = T θ. The other is M(s) = M2(s, P ) with

M2(s, P ) =
∑
n≤y

µ2(n)P
(

log y
n

log y

)
ns

(6.4)

where y = T θ and µ2 is the coefficient in the generating function for 1/ζ(s)2.

Here we will compute what the ratios conjecture tells us about the asymptotics for the kth
mollified moments in the case where we mollify with Mk(s, P ), where P (x) =

∑
m pmx

m is a
polynomial satisfying

P (0) = P ′(0) = · · · = P (k2−1)(0) = 0.(6.5)

These conditions on P (x) ensure that we have a smooth cut-off at n = y. It is only in the course
of the calculation that we see why we need k2 − 1 derivatives to be zero.

We note that

Mk(s, P ) =
∑
n≤y

µk(n)P
(

log y
n

log y

)
ns

=
∑
m

pmm!
(log y)m

1
2πi

∫
(c)

yw

ζk(s+ w)wm+1
dw,(6.6)

where µk is the coefficient in the generating function for 1/ζ(s)k, y = T θ and c > 0.

Thus, using s = 1/2 + it,

Mk(α, β) :=
1
T

∫ T

0
ζ(s+ α1) · · · ζ(s+ αk)ζ(1 − s− β1) · · ·(6.7)

×ζ(1 − s− βk)Mk(s,Q)Mk(1 − s, P ) dt

=
∑
m,n

qmm!pnn!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1

× 1
T

∫ T

0

ζ(s+ α1) · · · ζ(s+ αk)ζ(1 − s− β1) · · · ζ(1 − s− βk)
ζ(s+ w)kζ(1 − s+ z)k

dt dw dz

Using the contour integral form of the ratios conjectures (see, for example, [9, Lemma 2.1 or 10,
Lemma 2.5.1]; the sum of residues of this integral equals the

(
2k
k

)
terms in the ratio conjectures as
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we have previously been writing them, for example (2.10)), the integral over t is asymptotic to

T
1
2 (−�k

j=1(αj−βj))

(w + z)k2

(−1)
2k(2k−1)

2

(2πi)2kk!k!

∮
· · ·
∮
G(v1, . . . , v2k)∆(v1, . . . , v2k)2∏2k

i=1

∏k
j=1(vi − αj)(vi − βj)

dv1 · · · dv2k(6.8)

where

G(v1, . . . , vk, vk+1, . . . , v2k) =

∏k
j=1(vj + z)k

∏k
j=1(w − vj+k)k

D(v1+k, . . . , v2k; v1, . . . , vk)
T

1
2

�k
j=1(vj−vj+k).(6.9)

Here D(vk+1, . . . , v2k; v1, . . . , vk) =
∏k

j=1

∏k
i=1(vj − vi+k).

Noting the identity

yw+z

(w + z)A
=

1
(A− 1)!

∫ y

0
uw+z

(
log

y

u

)A−1 du

u
,(6.10)

with A = k2, we have

Mk(α, β) ∼
∑
m,n

qmm!pnn!
logm+n y

1
(2πi)2

∫
(c1)

∫
(c2)

T
1
2 (−�k

j=1(αj−βj))

(k2 − 1)!
(−1)

2k(2k−1)
2

(2πi)2kk!k!

×
∫ y

0

∮
· · ·
∮
G(v1, . . . , v2k)∆(v1, . . . , v2k)2∏2k

i=1

∏k
j=1(vi − αj)(vi − βj)

dv1 · · · dv2k u
w+z(log

y

u
)k2−1du

u

dw dz

wm+1zn+1
.(6.11)

So, focusing on just the integrals over u, w and z,

∫
(c1)

∫
(c2)

∫ y

0

k∏
j=1

(vj + z)k
k∏

j=1

(w − vj+k)k u
w+z(log y

u)k2−1

wm+1zn+1

du

u
dwdz

∼
∫

(c1)

∫
(c2)

logk2
y

∫ 1

0
eη(w+z) log y(1 − η)k2−1dη

∏k
j=1(vj + z)k

∏k
j=1(w − vj+k)k

wm+1zn+1
dwdz,(6.12)

where the substitution was log u
log y = η and we note that the part of the integral with u < 1 will not

contribute since for these values of u we can move the path of integration in w and z as far to the
right as we like. Now let y = T θ, αj = aj/ log T = ajθ/ log y, and similarly for bj and βj , as well as
making the replacements w → w/ log y, z → z/ log y and vj → vj/ log y. So we end up with

Mk(a/ log T, b/ log T ) ∼
∑
m,n

qmm!pnn!
1

(2πi)2
e

1
2 (−�k

j=1(aj−bj))

(k2 − 1)!
(−1)

2k(2k−1)
2

(2πi)2kk!k!

×
∮

· · ·
∮ ∫

(c1)

∫
(c2)

∫ 1

0
eη(w+z)(1 − η)k2−1dη

∏k
j=1(vj + z)k

∏k
j=1(w − vj+k)k

D(vk+1, . . . , v2k; v1, . . . , vk)wm+1zn+1
dwdz(6.13)

×e
1
2θ

(
�k

j=1(vj−vj+k))∆(v1, . . . , v2k)2∏2k
i=1

∏k
j=1(vi − θaj)(vi − θbj)

dv1 · · · dv2k.
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Now we note that
k∏

j=1

(vj + z)k
k∏

j=1

(w − vj+k)k(6.14)

=
dk

duk
1

· · · dk

duk
2k

eu1(v1+z)+···+uk(vk+z)+uk+1(w−vk+1)+···+u2k(w−v2k)
∣∣
u1=···=u2k=0

,

and that

(6.15)
1

2πi

∮
eaw

wm+1
dw =

am

m!
,

and use these to write

Mk(a/ log T, b/ log T ) ∼ e
1
2 (−�k

j=1(aj−bj))

(k2 − 1)!
(−1)

2k(2k−1)
2

(2πi)2kk!k!
dk

duk
1

· · · dk

duk
2k

∫ 1

0
(1 − η)k2−1(6.16)

×Q(η + uk+1 + · · · + u2k)P (η + u1 + · · · + uk)
∮

· · ·
∮
e

1
2θ

(
�k

j=1(vj−vj+k))

× eu1v1+···+ukvk−uk+1vk+1−···−u2kv2k∆(v1, . . . , v2k)2

D(vk+1, . . . , v2k; v1, . . . , vk)
∏2k

i=1

∏k
j=1(vi − θaj)(vi − θbj)

dv1 · · · dv2k dη
∣∣
u1=···=u2k=0

Now we concentrate on the contour integral over the vj variables:

Iv(u1, . . . , u2k)

:=
1

(2πi)2kk!k!

∮
· · ·
∮
e(

1
2θ +u1)v1+(

1
2θ +u2)v2+···+(

1
2θ +uk)vk−(

1
2θ +uk+1)vk+1−···−(

1
2θ +u2k)v2k

× ∆(v1, . . . , v2k)∆(v1, . . . , vk)∆(vk+1, . . . , v2k)
D(θa1, . . . , θak; v1, . . . , v2k)D(θb1, . . . , θbk; v1, . . . , v2k)

dv1 · · · dv2k.(6.17)

Expanding the determinants ∆(z1, . . . , zk) = det[zm−1
j ]1≤j,m≤k, we obtain

Iv =
1

(2πi)2kk!k!

∮
· · ·
∮
e(

1
2θ +u1)v1+(

1
2θ +u2)v2+···+(

1
2θ +uk)vk−(

1
2θ +uk+1)vk+1−···−(

1
2θ +u2k)v2k

D(θa1, . . . , θak; v1, . . . , v2k)D(θb1, . . . , θbk; v1, . . . , v2k)

×
(∑

S

sgn(S)vS0
1 vS1

2 · · · vSk−1

k vSk
k+1 · · · v

S2k−1

2k

)⎛⎝∑
Q

sgn(Q)vQ0
1 · · · vQk−1

k

⎞
⎠

×
(∑

R

sgn(R)vR0
k+1 · · · v

Rk−1

2k

)
dv1 · · · dv2k.(6.18)

Here Q and R are permutations of {0, 1, . . . , k − 1} and S is a permutation of {0, 1, . . . , 2k − 1}.
Since the integrand is symmetric amongst v1, . . . , vk and also amongst vk+1, . . . , v2k, in each term

of the sum over Q we permute the variables v1, . . . , vk so that vj appears with the exponent j − 1,
for j = 1, . . . , k. In the sum over S the effect is to redefine the permutations, and the additional
sign involved with this exactly cancels sgn(Q). We do the same with the sum over R, and as a
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result we are left with k!2 copies of the sum over the permutation S:

Iv =
1

(2πi)2k

∮
· · ·
∮
e(

1
2θ +u1)v1+(

1
2θ +u2)v2+···+(

1
2θ +uk)vk−(

1
2θ +uk+1)vk+1−···−(

1
2θ +u2k)v2k

D(θa1, . . . , θak; v1, . . . , v2k)D(θb1, . . . , θbk; v1, . . . , v2k)

×
∑
S

sgn(S)vS0
1 vS1+1

2 · · · vSk−1+(k−1)
k vSk

k+1v
Sk+1+1
k+2 · · · vS2k−1+(k−1)

2k dv1 · · · dv2k.(6.19)

This can then be written as the following determinant, where we have written out the jth row,
with j = 1, . . . , 2k.

Iv = det
{

1
2πi

∮
e(

1
2θ +u1)v1vj−1

1∏k
i=1(v1 − θai)(v1 − θbi)

dv1,
1

2πi

∮
e(

1
2θ +u2)v2vj

2∏k
i=1(v2 − θai)(v2 − θbi)

dv2, . . . ,

. . . ,
1

2πi

∮
e(

1
2θ +uk)vkvj+k−2

k∏k
i=1(vk − θai)(vk − θbi)

dvk,(6.20)

1
2πi

∮
e−(

1
2θ +uk+1)vk+1vj−1

k+1∏k
i=1(vk+1 − θai)(vk+1 − θbi)

dvk+1,
1

2πi

∮
e−(

1
2θ +uk+2)vk+2vj

k+2∏k
i=1(vk+2 − θai)(vk+2 − θbi)

dvk+2, . . . ,

. . . ,
1

2πi

∮
e−(

1
2θ +u2k)v2kvj+k−2

2k∏k
i=1(v2k − θai)(v2k − θbi)

dv2k

}
.

Setting the a’s and b’s equal to zero and performing the integration, we have (for integer n)

(6.21)
1

2πi

∮
ebvvndv =

{
0 n ≥ 0

b−n−1

(−n−1)! n < 0 ,

giving us

Iv(�u) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

( 1
2θ

+u1)2k−1

(2k−1)! · · · ( 1
2θ

+uk)k

k!

−( 1
2θ

+uk+1)2k−1

(2k−1)! · · · (−1)k( 1
2θ

+u2k)k

k!
( 1
2θ

+u1)2k−2

(2k−2)! · · · ( 1
2θ

+uk)k−1

(k−1)!

( 1
2θ

+uk+1)2k−2

(2k−2)! · · · (−1)k−1( 1
2θ

+u2k)k−1

(k−1)!
...

. . .
...

...
. . .

...
( 1
2θ

+u1)0

0! · · · ( 1
2θ

+uk)1−k

(1−k)!

( 1
2θ

+uk+1)0

0! · · · (−1)k−1( 1
2θ

+u2k)1−k

(1−k)!

⎞
⎟⎟⎟⎟⎟⎟⎠
.(6.22)

Note that many of the lower matrix entries are zero as we apply the convention that 1
n! = 0 for

integer n < 0.

So, the mollified kth moment with the α’s and β’s set to zero now has the form

Mk(0, 0) ∼ (−1)
2k(2k−1)

2

(k2 − 1)!
dk

duk
1

· · · dk

duk
2k

∫ 1

0
(1 − η)k2−1Iv(�u)(6.23)

×Q(η + uk+1 + · · · + u2k)P (η + u1 + · · · + uk) dη
∣∣
u1=···=u2k=0

.
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The differentiation with respect to the u variables is not difficult, but we will now restrict
ourselves to the case k = 2 where we can write the result fairly concisely. In this case we have

M2(0, 0) ∼ 1
3!

d2

du2
1

· · · d
2

du2
4

∫ 1

0
(1 − η)3(6.24)

×Q(η + u3 + u4)P (η + u1 + u2)dη

× det

⎛
⎜⎜⎜⎝

( 1
2θ

+u1)3

3!

( 1
2θ

+u2)2

2!

−( 1
2θ

+u3)3

3!

( 1
2θ

+u4)2

2!
( 1
2θ

+u1)2

2! ( 1
2θ + u2)

( 1
2θ

+u3)2

2! −( 1
2θ + u4)

( 1
2θ + u1) 1 −( 1

2θ + u3) 1
1 0 1 0

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u1=···=u4=0

.

Performing the differentiation leads to

M2(0, 0) ∼
∫ 1

0

(1 − η)3

6

(
Q(η)P (4)(η) +Q(4)(η)P (η) + 4(Q(3)(η)P ′(η) +Q′(η)P (3)(η))

+6Q′′(η)P ′′(η) +
2
θ
(Q(4)(η)P ′(η) +Q′(η)P (4)(η)) +

8
θ
(Q(3)(η)P ′′(η) +Q′′(η)P (3)(η))(6.25)

+
2
θ2

(Q(4)(η)P ′′(η) +Q′′(η)P (4)(η)) +
4
θ2
Q(3)(η)P (3)(η)

+
2

3θ3
(Q(4)(η)P (3)(η) +Q(3)(η)P (4)(η)) +

1
12θ4

Q(4)(η)P (4)(η)
)
dη.

Integration by parts gives

Theorem 6.1. Assuming the ratios conjecture as indicated in (6.8), if Q and P are polynomials
which vanish at 0 and whose first three derivatives vanish at 0, then for any θ > 0 we have

1
T

∫ T

0
|ζ(1/2 + it)|4M2(1/2 + it, Q)M2(1/2 − it, P ) dt

= P (1)Q(1) +
1
θ

∫ 1

0

(1 − η)3

6

(
2(Q(4)(η)P ′(η) +Q′(η)P (4)(η))(6.26)

+8(Q(3)(η)P ′′(η) +Q′′(η)P (3)(η)) +
2
θ
(Q(4)(η)P ′′(η) +Q′′(η)P (4)(η)) +

4
θ
Q(3)(η)P (3)(η)

+
2

3θ2
(Q(4)(η)P (3)(η) +Q(3)(η)P (4)(η)) +

1
12θ3

Q(4)(η)P (4)(η)
)
dη +O(1/ log T ).

Remark 6.2. While we don’t know which are the minimizing polynomials, with the choice that
P (x) = Q(x) = x4, the right side of (6.26) is equal to

(6.27) 1 +
208
35θ

+
48
5θ2

+
32
5θ3

+
2
θ4
.
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By a similar calculation one can show that with polynomials Pi and Qj satisfying Pi(0) = P ′
i (0) =

Qj(0) = Q′
j(0) = 0, we have

1
T

∫ T

0
|ζ(1/2 + it)|4M1(s, P1)M1(s, P2)M1(1 − s,Q1)M1(1 − s,Q2) dt

=
1
16

d

du1
· · · d

du4

d

dU1
· · · d

dU4

∫∫∫∫
R
P1(η1

2 + η2

2 + u3 + u4)P2(η3

2 + η4

2 + U3 + U4)

×Q1(η1

2 + η3

2 + u1 + u2)Q2(η2

2 + η4

2 + U1 + U2)dη1 · · · dη4(6.28)
× Iv(u1 + U1, u2 + U2, u3 + U3, u4 + U4)|u1=···=u4=U1=···=U4=0

+O(1/ log T ),

where R is the subset of [−1, 1]4 for which η1 + η2 ≥ 0, η3 + η4 ≥ 0, η1 + η3 ≥ 0 and η2 + η4 ≥ 0.

Remark 6.3. While we don’t know which are the minimizing polynomials, with the choice that
P1(x) = P2(x) = Q1(x) = Q2(x) = x2, the right side of (6.28) is equal to

(6.29) 1 +
68
21θ

+
10
3θ2

+
64

45θ3
+

2
9θ4

.

6.1. A third power mollification. In the work of Hughes alluded to earlier it is likely that in
applications to zeros of ζ(s) on the critical line the moment∫ T

0
|ζ(1/2 + it)|2|M1(1/2 + it, P1) + ζ(1/2 + it)M2(1/2 + it, P2)|2 dt(6.30)

will need to be evaluated. Here, as at (6.3) and (6.4), M1 is a mollifier with arithmetic coefficients
µ(m) smoothed by P1 and

M2(s, P2) :=
∑

m≤y2

µ2(m)P2

( y2
m

log y2

)
ms

,(6.31)

where the µ2 are the coefficients of 1/ζ(s)2. In order to evaluate this integral we can use the results
(5.20) and Theorem 6.1; in addition to these we need to evaluate

I3(α, β, γ;P1, P2) :=
∫ T

0
ζ(s+ α)ζ(s+ β)ζ(1 − s+ γ)M1(1 − s, P1)M2(s, P2) dt.(6.32)

Proceeding as usual,

I3 =
∑
m,n

p1,mm!p2,nn!
logm y1 logn y2

1
(2πi)2

∫
(c1)

∫
(c2)

yw+z

wm+1zn+1
(6.33)

×
∫ T

0

ζ(s+ α)ζ(s+ β)ζ(1 − s+ γ)
ζ(s+ w)2ζ(1 − s+ z)

dt dw dz

By the ratios conjecture,

I3 ∼ T
∑
m,n

p1,mm!p2,nn!
logm y1 logn y2

1
(2πi)2

∫
(c1)

∫
(c2)

yw
1 y

z
2

wm+1zn+1(w + z)2

(
(α+ z)(β + z)(γ + w)2

(α+ γ)(β + γ)
(6.34)

−T−α−γ (−γ + z)(β + z)(−α+ w)2

(α+ γ)(β − α)
− T−β−γ (α+ z)(−γ + z)(−β + w)2

(α− β)(β + γ)

)
dw dz



APPLICATIONS OF THE L-FUNCTIONS RATIOS CONJECTURES 41

Taking the limit (Mathematica can be helpful here) as α, β, γ → 0, we have

I3 ∼ T
∑
m,n

p1,mm!p2,nn!
logm y1 logn y2

1
(2πi)2

∫
(c1)

∫
(c2)

yz
1y

w
2

zm+1wn+1(w + z)2
(6.35)

(
(w + z)2 + w2zL+ 2wz2L+ w2z2L2/2

)
dw dz.

The contribution of the (w+z)2 term at the beginning of the brackets above is P1(1)P2(1), essentially
using (5.57). For the rest of the terms, we write, using (6.10),

yz
1y

w
2

(w + z)2
=
yw+z
2 (y1/y2)z

(w + z)2
= (y1/y2)z

∫ y2

0
uw+z log

y2

u

du

u
.(6.36)

The integral over w is 0 unless u ≥ 1; the integral over z is 0 unless uy1/y2 > 1; this inequality is
weaker than the requirement that u > 1, since, in general y1 > y2. In this way, we see that

I3 ∼ T

(
P1(1)P2(1) +

∫ y2

1

(
L

log y1 log2 y2

P ′
1

(
log y1u

y2

log y1

)
P ′′

2

(
log u
log y2

)
(6.37)

+
2L

log2 y1 log y2

P ′′
1

(
log y1u

y2

log y1

)
P ′

2

(
log u
log y2

)

+
L2

2 log2 y1 log2 y2

P ′′
1

(
log y1u

y2

log y1

)
P ′′

2

(
log u
log y2

))
log

y2

u
du

)
.

With a change of variables u = yη
2 , and with y1 = T θ1 , y2 = T θ2 , we see that

Theorem 6.4. Let I3 be as defined in (6.32). Assuming the ratios conjecture as indicated in (6.8),
if P1 and P2 are polynomials which vanish at 0 and whose first derivatives vanish at 0, then for
any θ > 0 we have

I3(0, 0, 0;P1, P2) = T

(
P1(1)P2(1) +

∫ 1

0

(
1
θ1
P ′

1

(
1 + (1 − η)θ2/θ1

)
P ′′

2 (η)(6.38)

+
2θ2
θ2
1

P ′′
1

(
1 + (1 − η)θ2/θ1

)
P ′

2(η)

+
1

2θ2
1

P ′′
1

(
1 + (1 − η)θ2/θ1

)
P ′′

2 (η)
)

(1 − η) dη +O(1/ log T )
)
.

7. Discrete moments of the Riemann zeta function and its derivatives

So far in this paper we’ve considered integer moments. Another kind of average which gives
useful information about the distribution of zeros is a discrete moment summing the zeta function,
or its derivatives, at or near the zeros.

In the 80’s Gonek [20], assuming the Riemann Hypothesis, proved, amongst much more general
results, that

(7.1)
∑

1≤γ≤T

|ζ ′(ρ)|2 =
T

24π
log4 T +O(T log3 T ),
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where ρ = 1/2 + iγ is a zero of the Riemann zeta function.

Hughes, Keating and O’Connell used the analogy with random matrix theory to propose the
following:

Conjecture 7.1 (Hughes, Keating and O’Connell [23]). For k > −3/2 and bounded,

(7.2)
∑

0<γn≤T

|ζ ′(1
2 + iγn)|2k ∼ T

2π
G2(k + 2)
G(2k + 3)

a(k)(log T )k(k+2)+1

as T → ∞, with

(7.3) a(k) =
∏
p

(1 − 1
p)k2

∞∑
m=0

(
Γ(m+ k)
m!Γ(k)

)2

p−m.

Here G(k) is the Barnes G-function.

While the above conjecture produces the leading order terms, it was previously not known how
to obtain lower order terms for the moments of |ζ ′(ρ)|. In the first two subsections we consider the
second and fourth moments of |ζ ′(ρ)|, and in the last subsection the second moment of |ζ(ρ+ a)|.
Using the ratios conjecture we show how to obtain all of the lower-order terms for these averages.

Note that Hughes [22] has conjectured using random matrix theory

Conjecture 7.2.

∑
0<γn≤T

|ζ(ρ+ 2πiα log−1 T
2π ))|2k ∼ T

2π
G2(k + 1)/G(2k + 1)a(k)Fk(2πα)(log T )k2+1,(7.4)

where

Fk(2x) = π
2 (xJk+1/2(x)

2 + xJk−1/2(x)
2 − 2kJk+1/2(x)Jk−1/2(x)).(7.5)

Here Jk is the usual Bessel function.

7.1. Second moment of the derivative:
∑

1≤γ≤T |ζ ′(ρ)|2. In this section we will show how to
use the ratios conjecture to reproduce the result of Gonek (7.1) and to derive all the lower order
terms.

The first step is to write the sum over zeros as a contour integral

(7.6)
∑
γ<T

|ζ ′(ρ)|2 =
1

2πi

∫
C

ζ ′(z)
ζ(z)

ζ ′(z)ζ ′(1 − z)dz,
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where the contour C has corners c, c + iT , 1 − c + iT and 1 − c, with 1/2 < c < 1. The integrals
along the horizontal sides of this rectangle can be neglected, and so we look first at

Ir =
1

2πi

∫ c+iT

c

ζ ′(z)
ζ(z)

ζ ′(z)ζ ′(1 − z)dz(7.7)

=
1
2π

∫ T

0

ζ ′(c+ it)
ζ(c+ it)

ζ ′(c+ it)ζ ′(1 − c− it)dt

=
d

dβ

d

dγ

d

dδ

1
2π

∫ T

0

ζ(c+ it+ β)
ζ(c+ it)

×ζ(c+ it+ γ)ζ(1 − c− it+ δ)dt
∣∣∣∣
β=γ=δ=0

.

Now we follow the recipe for computing the ratio of zeta functions in the integrand. As in Section
1, we replace zeta functions in the numerator by

(7.8) ζ(s) ∼
∑

n≤
�

t
2π

1
ns

+ χ(s)
∑

n≤
�

t
2π

1
n1−s

and zeta functions in the denominator by

(7.9)
1
ζ(s)

=
∞∑

n=1

µ(n)
ns

.

Since each of the zeta functions in the numerator is replaced by two sums, when multiplied out we
have a total of eight terms in the integral. Considering the term involving the first term from each
approximate functional equation, the resulting sum is

∑
hmn=

µ(h)
m1/2+βn1/2+γh1/2�1/2+δ

(7.10)

=
∑

h,m,n

µ(h)
m1+β+δn1+γ+δh1+δ

=
ζ(1 + β + δ)ζ(1 + γ + δ)

ζ(1 + δ)
.

Of the eight terms in the integrand, only those with the same number of χ factors resulting from
ζ(z) as from ζ(1−z) will survive. This means the recipe implies two further terms, and using (2.9),
we have

Ir =
d

dβ

d

dγ

d

dδ

1
2π

∫ T

0

(
ζ(1 + β + δ)ζ(1 + γ + δ)

ζ(1 + δ)
+ (

t

2π
)−β−δ ζ(1 − δ − β)ζ(1 + γ − β)

ζ(1 − β)

+(
t

2π
)−γ−δ ζ(1 + β − γ)ζ(1 − δ − γ)

ζ(1 − γ)

)
(1 +O(t−

1
2+ε))dt

∣∣∣∣
β=γ=δ=0

.(7.11)
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We now consider the contribution from the other side of the contour of integration:

(7.12) I =
1

2πi

∫ 1−c

1−c+iT

ζ ′(z)
ζ(z)

ζ ′(z)ζ ′(1 − z)dz.

Replacing z with 1 − z, we have

(7.13) I =
−1
2πi

∫ c

c−iT

ζ ′(1 − z)
ζ(1 − z)

ζ ′(1 − z)ζ ′(z)dz.

Differentiating the functional equation gives us

(7.14)
ζ ′

ζ
(1 − z) =

χ′

χ
(1 − z) − ζ ′

ζ
(z),

and so

I =
−1
2πi

∫ c

c−iT

χ′(1 − z)
χ(1 − z)

ζ ′(1 − z)ζ ′(z)dz(7.15)

+
1

2πi

∫ c

c−iT

ζ ′(z)
ζ(z)

ζ ′(z)ζ ′(1 − z)dz.

Here the first integral can be shifted over to the 1
2 -line, while the second one is just the complex

conjugate of Ir, already calculated in (7.11). In addition, we can use

(7.16) χ(s) = (
t

2π
)1/2−seit+πi/4(1 +O(1

t ))

to approximate χ′/χ(1 − z) with − log t
2π . Thus we have

∑
γ<T

|ζ ′(ρ)|2 = 2Ir +
1
2π

∫ T

0
log t

2π |ζ ′(1/2 + it)|2(1 +O(t−1))dt

= 2Ir +
d

dα

d

dβ

1
2π

∫ T

0
log t

2π ζ(1/2 + it+ α)ζ(1/2 − it+ β)(1 +O(t−1))dt
∣∣∣∣
α=β=0

(7.17)

= 2Ir +
d

dα

d

dβ

1
2π

∫ T

0
log t

2π

(
ζ(1 + α+ β) + (

t

2π
)−α−βζ(1 − α− β)

)

(1 +O(t−1/2+ε))dt
∣∣∣∣
α=β=0

,

where the last line is a further application of the ratios conjecture (or in this case the simpler
moment conjecture [10]) similar to that in Section 1.

Using (7.11) for Ir, it is now necessary to carry out the differentiation and take the limits as
α, β, γ and δ tend to zero. This results in a polynomial in log t

2π . If we write

(7.18) ζ(1 + s) =
1
s

+ γ − γ1s+
γ2

2!
s2 − γ3

3!
s3 · · · ,

then the final result is
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Theorem 7.3. Assuming the ratio conjecture as indicated in (7.11), we have

∑
γ<T

|ζ ′(ρ)|2 =
∫ T

0

(
1

24π
log4 t

2π
+

γ

3π
log3 t

2π
+ (

γ2

2π
− γ1

π
) log2 t

2π
− (

γ3

π
+

5γγ1

π
+
γ2

2π
) log

t

2π

+
γ4

π
+

6γ2γ1

π
+

7γ2
1

π
+

4γγ2

π
+

5γ3

3π

)
(1 +O(t−1/2+ε))dt

=
T

24π
log4 T +O(T log3 T ).(7.19)

Remark 7.4. The leading order term of the above agrees with Gonek’s result (7.1). It is possible
that Gonek’s methods could prove the theorem conditional only on the Riemann Hypothesis. Also,
Pokharel and Rubinstein have checked this numerically.

Remark 7.5. Since the original version of this paper appeared on the archive, Milinovich has used
Gonek’s method to verify all the main terms above. He also remarks that this result can probably
be obtained from a theorem of Fujii.

7.2. Fourth moment of the derivative:
∑

γ<T |ζ ′(ρ)|4. Higher moments are more difficult
because of complicated arithmetic contributions. Unlike the case of the fourth moment of the zeta
function itself,

1
T

∫ T

0
|ζ(1

2 + it)|4dt(7.20)

=
1
T

∫ T

0

1
2π2

log4 t
2π +

8
π4

(
γπ2 − 3ζ ′(2)

)
log3 t

2π

+
6
π6

(−48γζ ′(2)π2 − 12ζ ′′(2)π2 + 7γ2π4 + 144ζ ′(2)2 − 2 γ1π
4
)
log2 t

2π

+
12
π8

(
6γ3π6 − 84γ2ζ ′(2)π4 + 24γ1ζ

′(2)π4 − 1728ζ ′(2)3 + 576γζ ′(2)2π2

+ 288ζ ′(2)ζ ′′(2)π2 − 8ζ ′′′(2)π4 − 10γ1γπ
6 − γ2π

6 − 48γζ ′′(2)π4

)
log t

2π

+
4
π10

(
−12ζ ′′′′(2)π6 + 36γ2ζ

′(2)π6 + 9γ4π8 + 21γ2
1π

8 + 432ζ ′′(2)2π4

+ 3456γζ ′(2)ζ ′′(2)π4 + 3024γ2ζ ′(2)2π4 − 36γ2γ1π
8 − 252γ2ζ ′′(2)π6

+ 3γγ2π
8 + 72γ1ζ

′′(2)π6 + 360γ1γζ
′(2)π6 − 216γ3ζ ′(2)π6

− 864γ1ζ
′(2)2π4 + 5γ3π

8 + 576ζ ′(2)ζ ′′′(2)π4 − 20736γζ ′(2)3π2

− 15552ζ ′′(2)ζ ′(2)2π2 − 96γζ ′′′(2)π6 + 62208ζ ′(2)4
)
dt+ o(1)

=
1

12ζ(2)
log4 T +O(log3 T )(7.21)

(from the moment conjecture formula of [10] and also implied by [21]), the fourth moment of the
modulus of the derivative involves arithmetic factors that are more complicated than derivatives of
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the zeta function at 2. In the following we calculate the first four leading order terms, demonstrating
where the first of these new arithmetic factors appears.

As for the second moment, the first step is to write the sum over zeros as a contour integral

(7.22)
∑
γ<T

|ζ ′(ρ)|4 =
1

2πi

∫
C

ζ ′(z)
ζ(z)

ζ ′(z)ζ ′(1 − z)ζ ′(z)ζ ′(1 − z)dz,

with the contour C running from c to c+ iT , 1 − c+ iT and 1 − c. The horizontal integrals don’t
contribute significantly, and so we define

IR =
d

dα

d

dβ

d

dγ

d

dδ

d

dε

1
2π

∫ T

0

ζ(c+ it+ α)
ζ(c+ it)

×ζ(c+ it+ β)ζ(c+ it+ γ)ζ(1 − c− it+ δ)ζ(1 − c− it+ ε)dt
∣∣∣∣
α=β=γ=δ=ε=0

.(7.23)

The sum resulting from taking the first half of each approximate functional equation is

∑
m1m2m3h=n1n2

µ(h)

m
1/2+α
1 m

1/2+β
2 m

1/2+γ
3 h1/2n

1/2+δ
1 n

1/2+ε
2

.(7.24)

Here we note that if we let γ = 0 we obtain the sum

∏
p

∑
m1+m2+c=n1+n2

1
p(1/2+α)m1+(1/2+β)m2+(1/2)c+(1/2+δ)n1+(1/2+ε)n2

∑
m3+h=c

µ(ph).(7.25)

The final sum is zero unless c = 0, and thus the whole expression reduces to the corresponding
sum that results from applying the ratios (or moments) conjecture to the fourth moment of zeta,
1
T

∫ T
0 ζ(1/2+it+α)ζ(1/2+it+β)ζ(1/2−it+δ)ζ(1/2−it+ε)dt, which itself produces the arithmetic

contribution 1/ζ(2+α+β+ δ+ ε) observed as the factor 1/ζ(2) in the leading order term of (7.21)
(see for example [10]).

We keep this in mind as we continue with the sum in (7.24). This sum can be written as an
Euler product, and we can pull out the divergent terms in the form of zeta functions:

T (α, β, γ, δ, ε) :=
ζ(1 + α+ δ)ζ(1 + α+ ε)ζ(1 + β + δ)ζ(1 + β + ε)ζ(1 + γ + δ)ζ(1 + γ + ε)

ζ(1 + δ)ζ(1 + ε)

×
∏
p

[
(1 − 1

p1+α+δ )(1 − 1
p1+α+ε )(1 − 1

p1+β+δ )(1 − 1
p1+β+ε )(1 − 1

p1+γ+δ )(1 − 1
p1+γ+ε )

(1 − 1
p1+δ )(1 − 1

p1+ε )
(7.26)

×
∑

m1+m2+m3+h=n1+n2

µ(ph)
p(1/2+α)m1+(1/2+β)m2+(1/2+γ)m3+h/2+(1/2+δ)n1+(1/2+ε)n2

⎤
⎦ .



APPLICATIONS OF THE L-FUNCTIONS RATIOS CONJECTURES 47

With the remaining terms from the approximate functional equations we have

IR =
d

dα

d

dβ

d

dγ

d

dδ

d

dε

1
2π

∫ T

0
T (α, β, γ, δ, ε) + (

t

2π
)−α−δT (−δ, β, γ,−α, ε)

+(
t

2π
)−α−εT (−ε, β, γ, δ,−α) + (

t

2π
)−β−δT (α,−δ, γ,−β, ε) + (

t

2π
)−β−εT (α,−ε, γ, δ,−β)

+(
t

2π
)−γ−δT (α, β,−δ,−γ, ε) + (

t

2π
)−γ−εT (α, β,−ε, δ,−γ)

+(
t

2π
)−α−β−δ−εT (−δ,−ε, γ,−α,−β) + (

t

2π
)−α−γ−δ−εT (−δ, β,−ε,−α,−γ)

+(
t

2π
)−β−γ−δ−εT (α,−δ,−ε,−β,−γ)dt

∣∣∣∣
α=β=γ=δ=ε=0

+O(T 1/2+ε).(7.27)

The most concise way to write the ten terms in the integrand above is as a contour integral (as
described in [10]). So, we have that

IR =
d

dα

d

dβ

d

dγ

d

dδ

d

dε
e

log t/(2π)
2 (−α−β−γ−δ−ε) 1

2π

∫ T

0

1
3! 2!(2πi)5

∮
· · ·
∮
e

log t/(2π)
2 (z1+z2+z3−z4−z5)

× T (z1, z2, z3,−z4,−z5)∆(z1, . . . , z5)2∏5
j=1(zj − α)(zj − β)(zj − γ)(zj + δ)(zj + ε)

dz1 · · · dz5 dt+O(T 1/2+ε).(7.28)

With the formulae

(7.29)
d

dα

e−aα∏n
j=1(zj − α)

∣∣∣∣∣
α=0

=
1∏n

j=1 zj

⎛
⎝ n∑

j=1

1
zj

− a

⎞
⎠

and

(7.30)
d

dδ

e−aδ∏n
j=1(zj + δ)

∣∣∣∣∣
δ=0

=
1∏n

j=1 zj

⎛
⎝−

n∑
j=1

1
zj

− a

⎞
⎠

the differentiation can easily be performed, to yield

IR =
1
2π

∫ T

0

1
3! 2!(2πi)5

∮
· · ·
∮
T (z1, z2, z3,−z4,−z5)∆(z1, . . . , z5)2∏5

j=1 z
5
j

×
⎛
⎝− log t/(2π)

2 −
5∑

j=1

1
zj

⎞
⎠

2⎛
⎝− log t/(2π)

2 +
5∑

j=1

1
zj

⎞
⎠

3

×e
log t/(2π)

2 (z1+z2+z3−z4−z5)dz1 · · · dz5 dt+O(T 1/2+ε).(7.31)
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For the contribution from the other side of the contour of integration we have, following the same
method as for the second moment,

IL =
1

2πi

∫ 1−c

1−c+iT

ζ ′(z)
ζ(z)

ζ ′(z)ζ ′(1 − z)ζ ′(z)ζ ′(1 − z)dz

=
1
2π

∫ T

0

(
log

t

2π
+O(1/(t+ 1))

)
|ζ ′(1

2 + it)|4dt+ IR(7.32)

= IR +
d

dα

d

dβ

d

dγ

d

dδ

1
2π

∫ T

0

(
log

t

2π
+O(1/(t+ 1))

)
ζ(1/2 + it+ α)ζ(1/2 + it+ β)

ζ(1/2 − it+ γ)ζ(1/2 − it+ δ)dt
∣∣∣∣
α=β=γ=δ=0

.

The most concise way to write the six terms that will result from applying the ratio conjecture
(actually in this case there is no denominator so it is just a moment conjecture) to the fourth
moment of ζ in the last line above is as a contour integral similar to (7.28) (as described in [10]).
So, we have that

IL = IR +
d

dα

d

dβ

d

dγ

d

dδ
e

log t/(2π)
2 (−α−β−γ−δ) 1

2π

∫ T

0
log t

2π

1
2! 2!(2πi)4

×
∮

· · ·
∮
e

log t/(2π)
2 (z1+z2−z3−z4) ζ(1 + z1 − z3)ζ(1 + z1 − z4)ζ(1 + z2 − z3)ζ(1 + z2 − z4)

ζ(2 + z1 + z2 − z3 − z4)
(7.33)

× ∆(z1, . . . , z4)2∏4
j=1(zj − α)(zj − β)(zj + γ)(zj + δ)

dz1 · · · dz4 +O(T 1/2+ε).

Now we use the formulae (7.29) and (7.30) and arrive at

IL = IR +
1
2π

∫ T

0
log t

2π

1
2! 2!(2πi)4

×
∮

· · ·
∮
ζ(1 + z1 − z3)ζ(1 + z1 − z4)ζ(1 + z2 − z3)ζ(1 + z2 − z4)

ζ(2 + z1 + z2 − z3 − z4)

×∆(z1, . . . , z4)2∏4
j=1 z

4
j

⎛
⎝− log t/(2π)

2 −
4∑

j=1

1
zj

⎞
⎠

2⎛
⎝− log t/(2π)

2 +
4∑

j=1

1
zj

⎞
⎠

2

×e
log t/(2π)

2 (z1+z2−z3−z4)dz1 · · · dz4 +O(T 1/2+ε).(7.34)

We now compute the residues at z1 = z2 = z3 = z4 = z5 = 0 of the contour integrals in (7.31)
and (7.34) (using Mathematica). If we write

(7.35) ζ(1 + s) =
1
s

+ γ − γ1s+
γ2

2!
s2 − γ3

3!
s3 · · · ,

then the final result is
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Theorem 7.6. Assuming the ratios conjecture as indicated in (7.28), there are constants C0, . . . , C6

such that∑
γ<T

|ζ ′(ρ)|4 =
1
2π

∫ T

0

(
log9 t

2π

8640ζ(2)
− (−2γζ(2) + ζ ′(2)) log8 t

2π

480ζ2(2)

+
(7γ2ζ2(2) − 2γ1ζ

2(2) − 8γζ(2)ζ ′(2) + 4(ζ ′(2))2 − 2ζ(2)ζ ′′(2)) log7 t
2π

120ζ3(2)

+C6 log6 t
2π + · · · + C0

)
dt+O(T 1/2+ε)

=
T

2π
log9 T

8640ζ(2)
+O(T log8 T ).(7.36)

This leading term agrees with Conjecture 7.1 of Hughes, Keating and O’Connell [23]; since
G2(4)/G(7) = 8640 and a(2) = 1/ζ(2), we see that there is agreement between the leading order
term of (7.36) and the conjecture in the case that k = 2.

The first three terms in decreasing powers of log T , shown in (7.36) contain only arithmetic
factors that are derivatives of the Riemann zeta function evaluated at 2. This is not true of the
(log T )6 term. We can see that this will be the case by the comment after (7.25). The arithmetic
factor which forms part of T (α, β, γ, δ, ε) in (7.26),

A(α, β, γ, δ, ε)

=
∏
p

[
(1 − 1

p1+α+δ )(1 − 1
p1+α+ε )(1 − 1

p1+β+δ )(1 − 1
p1+β+ε )(1 − 1

p1+γ+δ )(1 − 1
p1+γ+ε )

(1 − 1
p1+δ )(1 − 1

p1+ε )
(7.37)

×
∑

m1+m2+m3+h=n1+n2

µ(ph)
p(1/2+α)m1+(1/2+β)m2+(1/2+γ)m3+h/2+(1/2+δ)n1+(1/2+ε)n2

⎤
⎦ ,

expands as a Taylor series

A(z1, z2, z3,−z4,−z5) = A0 +A1(z1 + z2 + z3 − z4 − z5)(7.38)
+A12(−z1z4 − z2z4 − z3z4 − z1z5 − z2z5 − z3z5 + z1z2 + z1z3 + z2z3 + z4z5)

+
A11

2
(z2

1 + z2
2 + z2

3 + z2
4 + z2

5)

+A124(−z1z2z4 − z1z3z4 − z2z3z4 − z1z2z5 − z1z3z5 − z2z3z5 + (z1 + z2 + z3)z4z5)
+A123z1z2z3

+
A112

2
(z2

4(z1 + z2 + z3 − z5) + z2
3(z1 + z2 − z4 − z5) + z2

2(z1 + z3 − z4 − z5)

+z2
1(z2 + z3 − z4 − z5) + (z1 + z2 + z3 − z4)z2

5)

+
A111

6
(z3

1 + z3
2 + z3

3 − z3
4 − z3

5) + · · · ,
where Aj is the partial derivative, evaluated at zero, of A(z1, z2, z3, z4, z5) with respect to the
jth variable. Note that A is symmetric amongst the first three variables, and amongst the final
two variables, so for example A12 = ∂A(z1,z2,z3,z4,z5)

∂z1∂z2

∣∣
z1=z2=z3=z4=z5=0

= A13 = A23. In addition, we
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noted at (7.25) that A(α, β, 0, δ, γ) is just the same as the arithmetic factor from the fourth moment
of zeta, 1

T

∫ T
0 ζ(1/2+it+α)ζ(1/2+it+β)ζ(1/2−it+δ)ζ(1/2−it+ε)dt, that is, 1/ζ(2+α+β+δ+ε).

Therefore all the partial derivatives of A in (7.38) can be computed by taking partial derivatives
of 1/ζ(2 + z1 + z2 + z4 + z5) except for the derivative A123 = ∂3A

∂z1∂z2∂z3
, which involves all of the

first three variables and gives a contribution that is not expressed as a derivative of ζ(2). This
contribution shows up first in the log6 T term.

7.3. A second moment:
∑

0<γ<T |ζ(ρ+a)|2. In [18] A. Fujii generalizes work of [20] and proves,
under the assumption of the Riemann Hypothesis, the following theorem.

Theorem 7.7 (Fujii [18]). Assume the Riemann Hypothesis is true. If T is sufficiently large and
α is a real number such that |α| � log T , then

∑
1≤γ≤T

|ζ(1
2 + i(γ + 2πα/ log T

2π ))|2 =

(
1 −
(

sinπα
πα

)2
)
T

2π
log2 T(7.39)

+2
(
−1 + γ + (1 − 2γ)

sin 2πα
2πα

+ �
(
ζ ′

ζ

(
1 + i

2πα
log(T/2π)

)))
T

2π
log

T

2π

+G(T, α) +O(
√
T log3 T ),

where γ is Euler’s constant and G(T, α) = O(T ) is explicitly given.

The ratios conjecture can reproduce this result in a straightforward way.

First we write the quantity we want to calculate in a form in which we can apply the ratios
conjecture:

(7.40)
∑

0<γ<T

|ζ(ρ+ a)|2 = lim
a1,a2→a

1
2πi

∫
C

ζ ′(z)
ζ(z)

ζ(z + a1)ζ(1 − z − a2)dz.
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Now we follow the identical method to that described in Section 7.1 and so obtain

∑
0<γ<T

|ζ(ρ+ a)|2 = lim
a1,a2→a

[
d

dα

1
2π

∫ T

0

ζ(1 + α− a2)ζ(1 + a1 − a2)
ζ(1 − a2)

+
(
t

2π

)−α+a2 ζ(1 + a2 − α)ζ(1 + a1 − α)
ζ(1 − α)

+
(
t

2π

)−a1+a2 ζ(1 + α− a1)ζ(1 + a2 − a1)
ζ(1 − a1)

dt
∣∣
α=0

+
d

dα

1
2π

∫ T

0

ζ(1 + α+ a1)ζ(1 − a2 + a1)
ζ(1 + a1)

(7.41)

+
(
t

2π

)−α−a1 ζ(1 − a1 − α)ζ(1 − a2 − α)
ζ(1 − α)

+
(
t

2π

)a2−a1 ζ(1 + α+ a2)ζ(1 − a1 + a2)
ζ(1 + a2)

dt
∣∣
α=0

+
1
2π

∫ T

0
log t

2π

(
ζ(1 − a2 + a1) +

(
t

2π

)−a1+a2

ζ(1 − a1 + a2)

)
dt

]

+O(T 1/2+ε).

Performing the differentiation and setting α = 0, we have

∑
0<γ<T

|ζ(ρ+ a)|2 = lim
a1,a2→a

1
2π

∫ T

0

ζ ′(1 − a2)ζ(1 + a1 − a2)
ζ(1 − a2)

−
(
t

2π

)a2

ζ(1 + a2)ζ(1 + a1)

+
(
t

2π

)−a1+a2 ζ ′(1 − a1)ζ(1 + a2 − a1)
ζ(1 − a1)

+
ζ ′(1 + a1)ζ(1 − a2 + a1)

ζ(1 + a1)
−
(
t

2π

)−a1

ζ(1 − a1)ζ(1 − a2)(7.42)

+
(
t

2π

)a2−a1 ζ ′(1 + a2)ζ(1 − a1 + a2)
ζ(1 + a2)

+ log t
2π

(
ζ(1 − a2 + a1) +

(
t

2π

)−a1+a2

ζ(1 − a1 + a2)

)
dt

+O(T 1/2+ε).

To perform the limit, let a1 = a and a2 = a+ s. Then

(7.43) lim
s→0

ζ(1 − s) +
(
t

2π

)s

ζ(1 + s) = log t
2π + 2γ,
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and

lim
s→0

ζ ′(1 − a− s)ζ(1 − s)
ζ(1 − a− s)

+
(
t

2π

)s ζ ′(1 − a)ζ(1 + s)
ζ(1 − a)

(7.44)

= (log t
2π + 2γ)

ζ ′(1 − a)
ζ(1 − a)

+
ζ ′′(1 − a)
ζ(1 − a)

− (ζ ′(1 − a))2

ζ2(1 − a)
.

Thus, assuming the ratios conjecture as indicated in (7.11), we have

∑
0<γ<T

|ζ(ρ+ a)|2 =
1
2π

∫ T

0
(log t

2π + 2γ)
(

log t
2π +

ζ ′(1 − a)
ζ(1 − a)

+
ζ ′(1 + a)
ζ(1 + a)

)
(7.45)

+
ζ ′′(1 − a)
ζ(1 − a)

+
ζ ′′(1 + a)
ζ(1 + a)

−
(
ζ ′(1 − a)
ζ(1 − a)

)2

−
(
ζ ′(1 + a)
ζ(1 + a)

)2

−
(
t

2π

)a

ζ(1 + a)ζ(1 + a) −
(
t

2π

)a

ζ(1 − a)ζ(1 − a) dt

+O(T 1/2+ε).

This result matches up exactly with Theorem 7.7; see in particular the bottom of page 66 in [18].

If we now let a = 2πiα log−1 T
2π , then for large T we can use the first few terms of the series

ζ(1+ s) = 1
s +γ−γ1s+γ2

s2

2 + · · · , as well as the similar expressions for the derivatives and inverse
of ζ(1+ s), and perform the integration over t to obtain a more standard expression for the leading
terms: ∑

0<γ<T

|ζ(ρ+ 2πiα log−1 T
2π )|2(7.46)

=

(
1 −
(

sinπα
πα

)2
)
T

2π
log2 T

2π +
T

2π
log T

2π

(
sin 2πα
πα

− 2γ
sin 2πα
πα

+ 4γ − 2
)

+
T

2π
(4γ cos 2πα− 2 cos 2πα− 2γ2 cos 2πα− 4γ1 cos 2πα+ 2γ2 − 4γ + 2) + o(T ).

8. Further connections with the literature

8.1. Non-vanishing of Dirichlet L-functions. Michel and VanderKam’s paper “Non-vanishing
of high derivatives of Dirichlet’s L-functions at the central point” [35] actually is concerned with
non-vanishing of derivatives of Λ(s, χ), the completed Dirichlet L-functions:

(8.1) Λ(s, χ) =
( q
π

)s/2Γ(s/2)L(s, χ),

which satisfies

(8.2) Λ(s, χ) = εχΛ(1 − s, χ).



APPLICATIONS OF THE L-FUNCTIONS RATIOS CONJECTURES 53

They use mollifying techniques to give a lower bound for the frequency of Λ(k)(1/2, χ) �= 0 as χ
ranges over primitive characters modulo q. They find (a) that using a mollifier with two pieces

Mk(1/2, χ) :=
∑
m≤y

µ(m)
(
χ(m) + (−1)kεχ(χ)χ(m)

)
P
(

log y
m

log y

)
m1/2

(8.3)

is more efficient than the conventional mollifier

M∗
k (1/2, χ) :=

∑
m≤y

µ(m)χ(m)P
(

log y
m

log y

)
m1/2

;(8.4)

in fact for Λ(1/2, χ) (no derivatives) they find that asymptotically 1/2 do not vanish, improving
work of Iwaniec and Sarnak [25] who had 1/3 in place of 1/2 here. They also prove (b) that when
mollifying the high derivatives of Λ, the proportion of non-vanishing of the kth derivative can be
shown to approach 2/3 as k → ∞, and that to obtain this result it is critical to use the general
mollifier.

In this section we use the ratios conjecture to reproduce the asymptotic formulae of [35]. In
addition we indicate how one can show that the proportion of non-vanishing for L(k)(1/2, χ) does
approach 100% as k → ∞ for this family.

Rather than work with the Dirichlet L-functions, we find it convenient to work with the Riemann
zeta-function in t aspect; they are both unitary families, so the results will be identical. For the
analogue of the Λ(k)(1/2, χ) function we will use the function

χ(s)1/2Z(k)(s),(8.5)

where

Z(s) = χ(s)−1/2ζ(s)(8.6)

is a complex analogue of Hardy’s Z(t) function. This is appropriate because the Z-function asso-
ciated with L(s, χ) is

(8.7) Z(s, χ) = ε−1/2
χ Λ(s, χ),

so that

(8.8) Λ(k)(s, χ) = ε1/2
χ Z(k)(s, χ).

Note that χ is used in two different roles here; recall that χ(s) is the factor from the functional
equation of the zeta function, see (2.3), and it plays the role of εχ.

The analogue of the quantity considered in [35] (in Section 7 of that paper) is(∫ T
0 χ(s)1/2Z(k)(s)M(s) dt

)2

∫ T
0 Z(k)(s)Z(k)(1 − s)M(s)M(1 − s) dt

,(8.9)

for a two-piece mollifier. However, here we will illustrate the calculation with the conventional
mollifier

(8.10) M(s) = M(s, P ) =
∑
m≤y

µ(m)P (log(y/m)/ log y)/ms.
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The object is to choose P is such a way that this ratio is minimized.

Since

χ(s) =
(
t

2π

)1/2−s

(1 +O(1/t))(8.11)

for t > 1, we have

d

ds

(
χ(s)−1/2

)
=
�

2
χ(s)−1/2(1 +O(1/t)),(8.12)

with � = log t
2π . Hence,

χ(s)1/2Z(k)(s) =
(
d

dα

)k

eα/2ζ(s+ α)(1 +O(1/t))
∣∣∣∣
α=0

.(8.13)

Thus the integral in the numerator can be evaluated by considering(
d

dα

)k ∫ T

0
eα/2ζ(s+ α)M(s, P ) dt

∣∣∣∣
α=0

∼
(
d

dα

)k

TeαL/2P (1)
∣∣∣∣
α=0

= TP (1)2−kLk(8.14)

where L = log T . (The ratios conjecture gives
∫ T
0

ζ(s+α)
ζ(s+w) dt ∼ T .) The denominator is, by (5.20)

and after rescaling α = a/L, β = b/L,

∼ TL2k

(
d

da

)k ( d
db

)k

e(a+b)/2

×
(
P (1)2 +

1
θ

d

dw

d

dz
e−aθw−bθz

∫ 1

0

∫ 1

0
e−(a+b)uP (w + r)P (z + r) dr du

∣∣∣∣
w=z=0
a=b=0

)

= TL2k

(
P (1)2

22k

+
1
θ

d

dw

d

dz

∫ 1

0

∫ 1

0
P (r + w)(1/2 − u− θw)kP (r + z)(1/2 − u− θz)k dr du

) ∣∣∣∣
w=z=0

= TL2k

(
P (1)2

22k
+

1
θ

∫ 1

0

∫ 1

0

(
P ′(r)(1/2 − u)k − kθP (r)(1/2 − u)k−1

)2

dr du

)

=
TL2k

22k

(
P (1)2 +

1
θ

∫ 1

0

P ′(r)2

2k + 1
dr + 4θ

∫ 1

0

k2P (r)2

2k − 1
dr

)
.(8.15)

This corresponds to the evaluation of Q1, accomplished in equation (17) in [35]. Note that ∆ = 2θ.

Thus, the ratio (8.9) is

P (1)2

P (1)2 + 1
θ

∫ 1
0

P ′(r)2
2k+1 dr + 4θ

∫ 1
0

k2P (r)2

2k−1 dr
.(8.16)

If k = 0 we take P (r) = r and θ = 1/2 and deduce that at least 1/3 of L-functions do not vanish
at 1/2. This is the result of Iwaniec and Sarnak [25]. For large k if we take P (r) = rk we see that
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this ratio is
1

1 +
(
4θ + 1

θ

)
k2

4k2−1

∼ 1
1 +
(
θ + 1

4θ

)(8.17)

which is 1/2 when θ = 1/2.

In general if A,B > 0, the minimum of A
∫ 1
0 P

′(x)2 dx+B
∫ 1
0 P (x)2 dx over smooth functions P

satisfying P (0) = 0 and P (1) = 1 is AP ′(1) and is achieved by P (x) = (sinh
√
B/Ax)/(sinh

√
B/A).

So the optimal choice for (8.16) is

P (r) =
sinh(Λr)
sinh Λ

, Λ = 2θk

√
2k + 1
2k − 1

(8.18)

as in [35]; however, this still gives that the ratio is 1/2 +O(1/k2).

Next we explain the use of the two part mollifier in the case that k = 0. For this, we consider a
mollifier of the form

M(s, P, a) :=
∑
n≤y

µ(n)P
(

log y
n

log y

)
(n−s + aχ(1 − s)ns−1)(8.19)

and we want to maximize the ratio(∫ T
0 ζ(s)M(s, P, a) dt

)2

∫ T
0 ζ(s)ζ(1 − s)M(s, P, a)M(1 − s, P, a) dt

.(8.20)

The key things to observe here are that, with M(s, P ) as in (8.10),∫ T

0
ζ(s)χ(1 − s)M(1 − s, P ) dt =

∫ T

0
ζ(1 − s)M(1 − s, P ) dt ∼ TP (1)(8.21)

and ∫ T

0
ζ(s)ζ(1 − s)M(1 − s, P )χ(1 − s)M(1 − s, P ) dt(8.22)

=
∫ T

0
ζ(1 − s)2M(1 − s, P )2 dt

∼ P (1)2T.

Thus, the ratio is

∼ T
(1 + a)2P (1)2

(1 + a2)
(
P (1)2 + 1

θ

∫ 1
0 P

′(t)2 dt
)

+ 2aP (1)2
.(8.23)

The optimal choices here are P (r) = r and a = 1; for θ = 1/2 this gives a ratio of 1/2 as claimed
in [35].

To handle high derivatives of L(s, χ) at s = 1/2 we consider, by analogy, high derivatives of ζ(s).
The trick is to insert a factor of χ(s) and to ask about the non-vanishing of

χ(s)ζ(k)(1 − s).(8.24)



56 J.B. CONREY AND N.C. SNAITH

Thus, we want to maximize the ratio of(∫ T
0 χ(s)ζ(k)(1 − s)M(s, P ) ds

)2

∫ T
0 |χ(s)ζ(k)(1 − s)M(s, P )|2 dt

.(8.25)

Now,

ζ(k)(1 − s) =
(
d

ds

)k

χ(1 − s)ζ(s) =
k∑

j=0

(
k

j

)
(−1)jχ(j)(1 − s)ζ(k−j)(s)(8.26)

= χ(1 − s)
(
d

dα

)k

eαζ(s+ α)
∣∣∣∣
α=0

.(8.27)

Thus, the numerator is

∼ (TP (1)Lk)2.(8.28)

The denominator is evaluated optimally in [14] and is T |P (1)|2L2k(1 − O(1/k2)). Applying this
method to L(s, χ) it can be deduced that there is a constant C > 0 such that the proportion of
L(k)(1/2, χ) which vanish is smaller than C/k2.

Remark 8.1. Michel and VanderKam [35] give a nice explanation at the end of Section 2 of
why one cannot expect to do better than 1/2 non-vanishing of Λ(k)(1/2, χ) using a conventional
mollifier and 2/3 using a two-piece mollifier. The reason relies on the symmetry of the approximate
functional equation for Λ(k)(1/2, χ) and the uniform distribution of εχ. That we can get a proportion
of non-vanishing of L(k)(1/2, χ) approaching 1 as k → ∞ does not contradict their argument because
of the lack of symmetry of the approximate functional equation for L(k)(1/2, χ). For applications to
bounding multiplicities of central zeros, information about non-vanishing of L(k)(1/2, χ) is equally
as good as for Λ(k)(1/2, χ).

8.2. Non-vanishing of automorphic L-functions. The main theorem of Kowalski, Michel, and
VanderKam’s paper “Non-vanishing of high derivatives of automorphic L-functions at the center of
the critical strip” [31] is a mollification of the second moment of weight 2 primitive cusp forms of a
prime level. The formula achieved is slightly different than the result we mention above (Theorem
5.3) for mollifying the second moment in an orthogonal family. The reason for this is that they use
a slightly different mollifier. Instead of choosing a smoothed sum of the coefficients of the inverses
of the Dirichlet series in question they choose a mollifier of the shape

∑
m≤y

λf (n)µ(n)P
(

log y
n

log y

)
ψ(n)n1/2

,(8.29)

where λf (n) are the coefficients of the L-function which is to be mollified and where ψ(n) =∏
p|n
(
1 + 1

p

)
. The analogue of our Theorem 5.3 has the right side replaced by

1
θ2

(
(Q(1)P ′(1) + θQ′(1)P (1))2 +

1
θ

∫ 1

0

∫ 1

0
(P ′′(x)Q(y) − θ2P (x)Q′′(y))2 dx dy

)
.(8.30)

This result, which is not deducible from our ratios conjecture, was reported in the paper of Conrey
and Farmer [8] as the general result one would obtain from mollifying a second moment in an
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orthogonal family. We wish to correct that statement and replace it with the statement of Theorem
5.3.

8.3. Non-vanishing of quadratic L-functions. The papers of Soundararajan and Conrey &
Soundararajan deal with non-vanishing of Dirichlet L-functions for real quadratic characters, at
the central point and on the real axis. The results of Theorem 5.2 are consistent with the results
of these papers [40,15].

9. Conclusion

The purpose of this paper was to illustrate the use of the ratios conjectures by deriving from
them a number of important results from the theory of L-functions. The variety of applications
is by no mean exhausted by what we have presented. Other calculations that might be valuable
include lower order terms in moments of S(t), log |ζ(1/2 + it)| and S(t+ h)− S(t). For the second
moment of S(t) the lower order terms have already been computed by Tsz Ho Chan [6], while lower
order terms of the second moment of S(t+h)−S(t) have been considered in [1]. Precise evaluations
of n-level correlations might be combined to obtain the secondary terms in the nearest neighbour
spacing distribution for the zeros of the Riemann zeta function. In [39], the leading term in the
n-correlation function is calculated for a restricted space of test functions, but for essentially any
L-function. Ratios conjectures could also be used to evaluate possible schemes to improve lower
bounds for proportions of zeros on the critical line.
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