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1. INTRODUCTION

2. SPECIAL CASE: n = 1 CASE

3. CONVERGENCE TO THE TRIVIAL FIXED POINT WHEN b ≤ (1−a)√
n

We show in this subsection that if b ≤ (1 − a)/
√
n, then there is only one valid fixed point, the

trivial fixed point.

Lemma 3.1. Let a, b ∈ (0, 1) with b < (1− a)/
√
n, and let λ1 ≥ λ2 denote the eigenvalues of the

matrix
(
aα nbβ
bγ aδ

)
, where α, β, γ, δ ∈ [0, 1]. Then −1 < λ1, λ2 < 1.

Proof. The sum of the eigenvalues is the trace of the matrix (which is a(α + δ), and the product
of the eigenvalues is the determinant (which is a2αδ − nb2βγ). Thus the eigenvalues satisfy the
characteristic equation

λ2 − a(α + δ)λ+ (a2αδ − nb2βγ). (3.1)

The eigenvalues are therefore

a(α + δ)±
√
a2(α + δ)2 − 4(a2αδ − nb2βγ)

2
=

a(α + δ)±
√
a2(α− δ)2 + 4nb2βγ

2
. (3.2)
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As the discriminant is positive, the eigenvalues are real. Since a(α + δ) ≥ 0, we have |λ2| ≤ λ1,
where

0 ≤ λ1 =
a(α + δ) +

√
a2(α− δ)2 + 4nb2βγ

2
. (3.3)

As βγ ≤ 1, nb2 < (1− a)2 and
√
u+ v ≤

√
u+
√
v for u, v ≥ 0 we find

λ1 <
a(α + δ) +

√
a2(α− δ)2 +

√
4(1− a)2

2

=
a(α + δ) + a|α− δ|+ 2(1− a)

2

=
2amax(α, δ) + 2(1− a)

2
= 1− (1−max(α, δ)) a ≤ 1, (3.4)

where the last claim follows from a, α, δ ∈ [0, 1]. �

Theorem 3.2. Assume b < (1 − a)/
√
n. Then there is only one valid fixed point, the trivial fixed

point (which may occur with multiplicity greater than 1). Further, iterates of any point converge to
the trivial fixed point.

Proof. We shall prove this by using the Mean Value Theorem and an eigenvalue analysis of the
resulting matrix.

We have

f

((
u
v

))
=

(
1− (1− au)(1− bv)n
1− (1− av)(1− bu)

)
. (3.5)

Let

c(t) = (1− t)
(

0
0

)
+ t

(
x
y

)
, c′(t) =

(
x
y

)
. (3.6)

Thus c(t) is the line connecting the trivial fixed point to
(
x
y

)
, with c(0) =

(
0
0

)
and c(1) =(

x
y

)
. Let

F(t) = f(c(t)) =

(
1− (1− atx)(1− bty)n
1− (1− aty)(1− btx)

)
. (3.7)

Then simple algebra (or the chain rule) yields

F ′(t) =

(
a(1− bty)n nb(1− atx)(1− bty)n−1
b(1− aty) a(1− btx)

)(
x
y

)
. (3.8)

We now apply the one-dimensional chain rule twice, once to the x-coordinate function and once
to the y-coordinate function. We find there are values t1 and t2 such that

f

((
x
y

))
− f

((
0
0

))
=

(
a(1− bt1y)n nb(1− at1x)(1− bt1y)n−1
b(1− at2y) a(1− bt2x)

)(
x
y

)
. (3.9)

To see this, look at the x-coordinate of F(t): h(t) = 1− (1− atx)(1− bty)n. We have h(1)−h(0)
= h(1) = h′(t1)(1− 0) for some t1. As

h′(t1) = ax(1− bt1y)n + nby(1− at1x)(1− bt1y)n−1

=
(
a(1− bt1y)n, nb(1− at1x)(1− bt1y)n−1

)
·
(
x
y

)
, (3.10)

the claim follows; a similar argument yields the claim for the y-coordinate (though we might have to
use a different value of t, and thus denote the value arising from applying the Mean Value Theorem
here by t2).
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We therefore have

f

((
x
y

))
=

(
a(1− bt1y)n nb(1− at1x)(1− bt1y)n−1
b(1− at2y) a(1− bt2x)

)(
x
y

)
= A(a, b, x, y, t1, t2)

(
x
y

)
. (3.11)

To show that f is a contraction mapping, it is enough to show that, for all a, b with b < (1− a)/
√
n

and all x, y ∈ [0, 1] that the eigenvalues of A(a, b, x, y, t1, t2) are less than 1 in absolute value;
however, this is exactly what Lemma 3.1 gives (note our assumptions imply that α = (1 − bt1y)n
through δ = (1 − bt2x) are all in (0, 1)). Let us denote λmax(a, b) the maximum value of λ1 for
fixed a and b as we vary t1, t2, x, y ∈ [0, 1]. As we have a continuous function on a compact set,
it attains its maximum and minimum. As λ1 is always less than 1, so is the maximum. Here it
is important that we allow ourselves to have t1, t2 ∈ [0, 1], so that we have a closed and bounded
set; it is immaterial (from a compactness point of view) that a, b ∈ (0, 1) as they are fixed. As
0 < a, b < 1, we have α, β, γ, δ < 1 and thus the inequalities claimed in Lemma 3.1 hold. For any
matrix M we have ||Mv|| ≤ |λmax|||v||; thus∣∣∣∣∣∣∣∣f (( x

y

))∣∣∣∣∣∣∣∣ ≤ λmax(a, b)

∣∣∣∣∣∣∣∣( x
y

)∣∣∣∣∣∣∣∣ ; (3.12)

as λmax(a, b) < 1 we have a contraction map. Therefore any non-zero
(
x
y

)
iterates to the trivial

fixed point if b < (1− a)/
√
n and n ≥ 2. In particular, the trivial fixed point is the only fixed point

(if not, A(a, b, x, y, t1, t2)v = v for v a fixed point, but we know ||A(a, b, x, y, t1, t2)v|| < ||v|| if v
is not the zero vector). �

4. CONVERGENCE TO A UNIQUE NONTRIVIAL FIXED POINT WHEN b > (1−a)√
n

Lemma 4.1. Let h1, h2 : [0, 1] → [0, 1] be twice continuously differentiable functions such that
h1(x) is convex up, h2(x) is concave up, h1(0) = h2(0) = 0 and h1(x) 6= h2(x) for x > 0
sufficiently small. Then for at most two choices of x do we have h1(x) = h2(x).

Proof. The claim is trivial if there is only one point of intersection, so assume there are at least two.
Without loss of generality we may assume p > 0 is the first point above zero where h1 and h2 agree.
Such a smallest point exists by continuity, as we have assumed h1(x) 6= h2(x) for x > 0 sufficiently
small; if there are infinitely many points xn where they are equal, let p = lim infn xn > 0. (We
technically do not need to prove this – we could take any two points where the functions agree and
show there cannot be a third point larger than the first two where the functions agree.)

Because h1(x) is convex up, h′1(x) is increasing. By the mean value theorem there is a point
c1 ∈ (0, p) such that h′1(c1) = (h1(p) − h1(0))/(p − 0) = h1(p)/p. As h′1 is increasing, we
have h′1(p) > h1(c1); further, h′1(x) > h1(c1) for all x ≥ p. As h2(x) is concave up, h′2(x) is
decreasing. Again by the mean value theorem there is a point c2 ∈ (0, p) such that h′2(c2) =
((h2(p) − h2(0))/(p − 0) = h2(p)/p. As h′2 is decreasing, we have h′2(p) < h′2(c2), and in fact
h′2(x) < h′2(c2) for all x ≥ p. But h′1(c1) = h′2(c2) (since h1(p) = h2(p)), so h′1(x) > h′2(x) for all
x ≥ p. Thus there cannot be another point of intersection after p. �

For b > (1− a)/
√
n, we show that there is a unique, nontrivial valid fixed point and that all non-

trivial iterates converge to that nontrivial fixed point. The existence and uniqueness proof involves
looking at the intersection of two curves, one where the x-coordinate is unchanged under applying
f , and one where the y-cooridnate is unchanged after applying f . One of these curves is concave
up, the other convex up. The proof is completed by the following lemma.
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Theorem 4.2. Assume a, b ∈ (0, 1), b > (1 − a)/
√
n and n ≥ 2. Then there exists a unique

non-trivial, valid fixed point.

Proof. We prove this through repeated applications of the Intermediate Value Theorem and conti-
nuity. Let

g

((
x
y

))
=

(
g1(x, y)
g2(x, y)

)
= f

((
x
y

))
−
(
x
y

)
. (4.1)

Note
(
x
y

)
is a fixed point if and only if g

((
x
y

))
= 0.

We first look for partial fixed points, namely points where either the x or the y-coordinate is

unchanged. These correspond to finding
(
x
y

)
with g1(x, y) = 0 or g2(x, y) = 0. We first analyze

the set of pairs (x, y) ∈ [0, 1]2 where g1(x, y) = 0. We have

g1(x, y) = (1− (1− ax)(1− by)n)− x. (4.2)

We immediately see that g1(0, 0) = 0, g1(0, y) > 0 for y ∈ (0, 1], and g1(1, y) < 0 for y ∈
[0, 1]. Thus by the Intermediate Value Theorem, for each y ∈ (0, 1] there is a φ1(y) such that
g1(φ1(y), y) = 0 and φ1(y) ∈ [0, 1]. It is easy to see that φ1(y) is a continuous function of y; in fact,

φ1(y) =
1− (1− by)n

1− a(1− by)n

φ′1(y) =
nb(1− a)(1− by)n−1

(1− a(1− by)n)2
. (4.3)

Note φ1(y) ∈ [0, 1]: it is clearly positive, and 1−c
1−ac > 1 for c > 0 only when a > 1. As a, b ∈ (0, 1),

φ′1(y) > 0. Thus φ1(y) is strictly increasing, and φ1(0) = 0. Further, we have for small y that
φ1(y) ≈ nb

1−ay. To see this, we note (1− by)n = 1− nby + O(y2) and substitute into (4.3). To aid
in the analysis below, it is more convenient to re-write this as y ≈ 1−a

nb
x (as φ′1(y) > 0 we may use

the inverse function theorem to write y as a function of x).
We analyze g2(x, y) = 0 similarly. We find

g2(x, y) = (1− (1− ay)(1− bx))− y = 0. (4.4)

Note g2(0, 0) = 0, g2(x, 0) > 0 for x ∈ (0, 1], and g2(x, 1) < 0 for x ∈ [0, 1]. Solving yields

y = φ2(x) =
bx

1− a+ abx
. (4.5)

This is clearly continuously differentiable, and

φ′2(x) =
b(1− a)

(1− a+ abx)2
> 0. (4.6)

Thus φ2(x) is an increasing function of x. Further, for small x we have y ≈ b
1−ax.

We now use the assumption that b > (1− a)/
√
n. Near the origin, φ1(y) looks like the line y =

1−a
nb
x, while near the origin φ2(x) looks like the line y = b

1−ax. If 1−a
nb

< b
1−a then φ2(x) is above

φ1(y) near the origin. Cross multiplying shows that this condition is equivalent to b2 > (1− a)/n,
or b > (1 − a)/

√
n. Thus, for a, b ∈ (0, 1) and b > (1 − a)/

√
n, the two curves x = φ1(y) and

y = φ2(x) have at least two intersections in [0, 1]2; one is the trivial fixed point while the other is
a non-trivial, valid fixed point. The existence of the second point of intersection follows from the
intermediate value theorem (near the origin y = φ2(x) is above x = φ1(y); however, as x → 1 we
have φ2(x) tends to a number strictly less than 1. Thus the curve y = φ2(x) hits the line x = 1
below (1, 1). Similarly the curve x = φ1(y) hits the line y = 1 to the left of (1, 1). Thus the two
curves flip as to which is above the other, implying that there must be one point where the two
curves are equal. This point is clearly a fixed point.
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FIGURE 1. Four regions determined by φ1 and φ2.

We now show there are only two intersections (i.e., there is a unique, non-trivial valid fixed point).
The proof follows from showing that y = φ2(x) is concave up (concave increasing) and x = φ1(y)
is convex up (convex increasing). There are already two points of intersection, and by Lemma 4.1
there can be at most two points of intersection. Straightforward differentiation and some algebra
gives

φ′′2(x) =
−2ab2(1− a)
(1− a+ abx)2

< 0

φ′′1(y) = −b
2n(1− a)(1− by)n−2 · (n− 1 + a(1− by)n + a(n+ 1)(1− by)n)

(1− a(1− by)n)3
< 0.

(4.7)

Thus y = φ′′2(x) is concave up (since the second derivative is always negative and the first derivative
is always positive: compare this to the standard parabola y = −x2 when x < 0). As a function
of y, x = φ1(y) is also concave up (since its first derivative is positive and its second derivative
is negative); however, we are interested in y = φ−11 (x) (the inverse function exists because the
first derivative is positive). If φ1(y) is concave up as a function of y then φ−11 (x) is convex up as
a function of x. This follows because we are basically reflecting about the x = y line, and this
switches us from concave to convex (the function is obviously still increasing). The claim now
follows from Lemma 4.1. �

Proof of convergence to this nontrivial fixed point relies on an analysis of the behavior of points
in the regions defined by φ1 (x) and φ2 (y) above. See Figure 1 for

Lemma 4.3. Points in region I strictly increase in x and y on iteration, and points in region III
strictly decrease in x and y on iteration.

Proof. A point
(
x
y

)
in region I satisfies the inequalities:

x <
1− (1− by)n

1− a(1− by)n
(4.8)

and
y <

bx

1− a+ abx
(4.9)

By multiplying by the denominator on both sides for both inequalities, we find that:

x− ax (1− by)n < 1− (1− by)n (4.10)
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and
y − ay + abxy < bx. (4.11)

Rearranging these terms gives:

x < 1− (1− by)n + ax(1− by)n = 1− (1− ax)(1− by)n = f1 (x, y) (4.12)

and
y < ay + bx− abxy = 1− (1− ay)(1− bx) = f2 (x, y) . (4.13)

Thus, the x and y coordinates of the iterate of a point in region I are strictly greater than the x and
y coordinates of the initial point.

The proof for points in region III is exactly analogous except with the inequalities fixed, so that:

x >
1− (1− by)n

1− a(1− by)n
(4.14)

and
y >

bx

1− a+ abx
(4.15)

implies
x > 1− (1− ax)(1− by)n = f1 (x) (4.16)

and
y > 1− (1− ay)(1− bx) = f2 (y) , (4.17)

i.e. the x and y coordinates of the iterate of a point in region III are strictly less than the x and y
coordinates of the initial point. �

Lemma 4.4. Points in region I iterate inside region I, and points in region III iterate inside region
III.

Proof. We prove that for a point
(
x
y

)
in region I, its iterated x-coordinate satisfies 4.14 and its

iterated y-coordinate satisfies 4.15.

X-Coordinate Iteration: We must show that:

1− (1− ax)(1− by)n <
1− (1− b(1− (1− ay)(1− bx)))n

1− a(1− b(1− (1− ay)(1− bx)))n
. (4.18)

Since
(
x
y

)
is in region I, we know that

x < 1− (1− ax)(1− by)n, (4.19)

which implies that
x

1− (1− ax)(1− by)n
< 1. (4.20)

Since 0 < a, b, y < 1, we know that a(1− by)n > 0. Thus,

1− ax(1− by)n

1− (1− ax)(1− by)n
> 1− a(1− by)n. (4.21)

We simplify the left side of the inequality:
1− (1− ax)(1− by)n

1− (1− ax)(1− by)n
− ax(1− by)n

1− (1− ax)(1− by)n
> 1− a(1− by)n

1− (1− by)n + ax(1− by)n

1− (1− ax)(1− by)n
− ax(1− by)n

1− (1− ax)(1− by)n
>

1− (1− by)n

1− (1− ax)(1− by)n
> (4.22)
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Finally, we rearrange the inequality:

1− (1− by)n

1− a(1− by)n
> 1− (1− ax)(1− by)n (4.23)

For the second part of the proof, recall that

y < 1− (1− ay)(1− bx) (4.24)

which implies

(1− b(1− (1− ay)(1− bx)))n < (1− by)n (4.25)

Now we let (1 − b(1 − (1 − ay)(1 − bx)))n = c and (1 − by)n = c + δ where 0 < c < 1 and
δ > 0 such that c < c+ δ < 1. Then we can write

−δ < −aδ
1− c− δ − ac+ ac2 + acδ < 1− c− ac+ ac2 − aδ + aδc

(1− ac)(1− c− δ) < (1− ac− aδ)(1− c)
1− (c+ δ)

1− a(c+ δ)
<

1− c
1− ac

. (4.26)

Thus
1− (1− b(1− (1− ay)(1− bx)))n

1− a(1− b(1− (1− ay)(1− bx)))n
>

1− (1− by)n

1− a(1− by)n
. (4.27)

The desired result follows from 4.23, 4.27, and transitivity.

Y -Coordinate Iteration: We must show that:

1− (1− ay)(1− bx) < b(1− (1− ax)(1− by)n)
1− a+ ab(1− (1− ax)(1− by)n)

(4.28)

Since
(
x
y

)
is in region I, we know that:

x < 1− (1− ax)(1− by)n (4.29)

y < 1− (1− ay)(1− bx) (4.30)

which implies that

y

1− (1− ay)(1− bx)
< 1 (4.31)

Now since 0 < a, b, x < 1, we know that abx− a < 0. Thus,

1 +
y(abx− a)

1− (1− ay)(1− bx)
> 1− a+ abx (4.32)

We simplify the left side of the inequality:
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1− (1− ay)(1− bx)
1− (1− ay)(1− bx)

+
y(abx− a)

1− (1− ay)(1− bx)
> 1− a+ abx

ay + bx− abxy
1− (1− ay)(1− bx)

+
abxy − ay

1− (1− ay)(1− bx)
>

bx

1− (1− ay)(1− bx)
> (4.33)

Finally, we rearrange the inequality:

bx

1− a+ abx
> 1− (1− ay)(1− bx) (4.34)

For the second part of the proof, recall that

x < 1− (1− ax)(1− by)n (4.35)

This allows us to write 1− (1− ax)(1− by)n = x+ c for some c > 0 such that x < x+ c < 1.
Since c > 0 and a, b < 1 we see that

bc− abc > 0

bx+ bc− abx− abc+ ab2x2 + ab2xc > bx− abx+ ab2x2 + ab2xc

b(x+ c)(1− a+ abx) > bx(1− a+ ab(x+ c)) (4.36)

Thus

b(x+ c)

1− a+ ab(x+ c)
>

bx

1− a+ abx
(4.37)

That is,

b(1− (1− ax)(1− by)n)
1− a+ ab(1− (1− ax)(1− by)n)

>
bx

1− a+ abx
(4.38)

The desired result follows from 4.34, 4.38, and transitivity. �

Lemma 4.5. All nontrivial points in regions I and III converge to the nontrivial fixed point.

Proof. Consider any nontrivial point z0 =

(
x0
y0

)
in region I. Define a sequence zt+1 = f (zt).

By 4.3, we know that zt is monotonically increasing. Furthermore, we know that zt is bounded by(
xf
yf

)
. Thus, zt must converge. Suppose it converges to z′, i.e. limt→∞ zt = z′. We consider the

iterate of z′.
f (z′) = f

(
lim
t→∞

zt

)
= lim

t→∞
f (xt) = lim

t→∞
zt+1 = lim

t→∞
zt = z′. (4.39)

Thus, z′ is a fixed point. Since z0 >
(

0
0

)
and zt is increasing, z′ cannot be the trivial fixed

point. Thus z′ must be the unique nontrivial fixed point. For region III, we have a monotonically
decreasing and bounded sequence zt that must thus converge to a fixed point. By 4.4, this fixed
point must be in region III and thus can only be the unique nontrivial fixed point. �

Theorem 4.6. Any nontrivial point in [0, 1]× [0, 1] converges to the unique nontrivial fixed point.
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Proof. Let
(
x
y

)
be a point in (0, 1] × (0, 1], and choose

(
xi
yi

)
in Region I and

(
xs
ys

)
in

Region III such that xi ≤ x ≤ xs and yi ≤ y ≤ ys. Define the sequence zt = (zt(x), zt(y)) such
that zt+1 = (zt+1(x), zt+1(y)), with zt+1(x) = f1(zt(x), zt(y)) and zt+1(y) = f2(zt(x), zt(y)). Let
z0(x) = x and z0(y) = y. We show by induction that zt(xi) ≤ zt(x) ≤ zt(xs) and zt(yi) ≤ zt(y) ≤
zt(ys) for all t ∈ N.

The base case is given by our choice of
(
xi
yi

)
and

(
xs
ys

)
, so we proceed to show the inductive

step. Suppose that we have zt(xi) ≤ zt(x) and zt(yi) ≤ zt(y). Then

1− azt(xi) ≥ 1− azt(x) (4.40)

and
1− bzt(yi) ≥ zt(y) (4.41)

which implies that

(1− azt(xi))(1− bzt(yi)n ≥ (1− azt(x))(1− bzt(y))n (4.42)

for any n ≥ 1. Then

1− (1− azt(xi))(1− bzt(yi)n ≤ 1− (1− azt(x))(1− bzt(y))n. (4.43)

That is, zt+1(xi) ≤ zt+1(x). Furthermore, we have that

1− azt(yi) ≥ 1− azt(y) (4.44)

and
1− bzt(xi) ≥ 1− bzt(x) (4.45)

which implies that

(1− azt(yi))(1− bzt(xi) ≥ (1− azt(y))(1− bzt(x)). (4.46)

Then
1− (1− azt(yi))(1− bzt(xi) ≤ 1− (1− azt(y))(1− bzt(x)). (4.47)

That is, zt+1(yi) ≤ zt+1(y). By a similar argument, we see that zt(x) ≤ zt(xs) and zt(y) ≤ zt(ys)
implies that zt+1(x) ≤ zt+1(xs) and zt+1(y) ≤ zt+1(ys).
Thus zt(xi) ≤ zt(x) ≤ zt(xs) and zt(yi) ≤ zt(y) ≤ zt(ys) for all t ∈ N. Taking the limit, we have

lim
t→∞

zt(xi) ≤ lim
t→∞

zt(x) ≤ lim
t→∞

zt(xs) (4.48)

and
lim
t→∞

zt(yi) ≤ lim
t→∞

zt(y) ≤ lim
t→∞

zt(ys) (4.49)

Since
(
xi
yi

)
is in Region I and

(
xs
ys

)
is in Region III, the inequalities become

xf ≤ lim
t→∞

zt(x) ≤ xf (4.50)

and
yf ≤ lim

t→∞
zt(y) ≤ yf . (4.51)

Thus limt→∞zt(x) = xf and limt→∞zt(y) = yf , that is,
(
x
y

)
iterates to

(
xf
yf

)
. �
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5. BEHAVIOR

Corollary 5.1. The amount of time it takes for all points to converge is the maximum of the time it

takes
(
ε1
ε2

)
and

(
1
1

)
to converge, for ε1, ε2 → 0.

Conjecture 5.2. Points in region II and IV exhibit one of two behaviors, dependent on a, b, n.
Either:

(1) All points in region II iterate outside region II and all points in region IV iterate outside
region IV ("flipping behavior"), or

(2) All points in region II iterate outside region IV and all points in region IV iterate outside
region II ("non-flipping behavior")

6. GENERALIZED STAR GRAPHS
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