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The Gauss-Bonnet Formula on Surfaces with Densities 
 

Frank Morgan and Ivan Corwin 
 
 A classic, though somewhat anthropomorphic, question in mathematics is whether 
an ant moving on a curve embedded in R3 or in a surface can measure the curvature κ of 
the curve or say anything about how the curve is embedded in space. The answer, no, 
stems from the fact that the ant can only measure distance along the curve and has no 
way to determine changes in direction. Curvature is extrinsic to a curve and must be 
measured from outside the curve. 
 Following this one might then ask the more realistic question of whether a person 
moving in a surface embedded in R3 has any chance of saying something about 
the surface’s curvature in R3. Whereas the ant could only measure distance along 
the curve, a person on a surface has the ability to measure both length and area on the 
surface. Does this change things? 
 The answer is yes. Gauss’s Theorem Egregium declares that a certain measure of 
surface curvature now known as the Gauss curvature G turns out to be an intrinsic 
quantity, measurable from within the surface. This is not at all apparent from its 
definition. G is defined as the product of the principal curvatures κ1, κ2, the largest and 
smallest (or most positive and most negative) curvatures of one-dimensional slices by 
planes orthogonal to the surface. For a plane, G = 0. For a sphere of radius a, G = 1/a2. 
For the hyperbolic paraboloid {z = (1/2)(x2−y2)}, at the origin G = −1, negative because 
the surface is curving up in one direction and down in the other direction; as you move 
farther out in the surface, G approaches 0 as the surface flattens out. 
 The fact that the Gauss curvature is actually intrinsic is a consequence of the 
celebrated Gauss-Bonnet formula [M2]. Gauss-Bonnet relates the integral of the Gauss 
curvature over a smooth topological disc D in a surface to the integral over the boundary 
∂D of the curvature κ of the boundary: 
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For example, for a smooth closed curve C in the plane, where G = 0, 
 

!
C" = 2# , 

 
i.e., the total curvature of an embedded planar curve is 2π. For a smooth closed curve C 
enclosing area A on the unit sphere, where G = 1, 
 

!
C" + A = 2# . 

 
For example, the equator, with curvature κ = 0, encloses area 2π. Note that we are using 
the intrinsic or “geodesic” curvature κ, not the curvature of the curve in R3 if the surface 
is embedded in R3. 
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 Gauss-Bonnet has extensive applications throughout geometry and topology. It 
can be used to classify two-dimensional surfaces by genus and to solve isoperimetric 
problems (see [HHM] or [M2, §9.12]).  
 The Gauss-Bonnet formula provides an intrinsic definition of the Gauss curvature 
G of a surface at a point p by considering ε-balls Bε of area A about p and taking a limit 
as ε approaches 0: 
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 This article considers what happens to the Gauss-Bonnet formula under some 
simple intrinsic alterations of the surface. The most common alteration, called a 
conformal change of metric, scales distance by a variable factor λ, so that ds = λ ds0 and 
dA = λ2 dA0; that is, arclength is weighted by λ and area is weighted by λ2. More 
generally, one can weight arclength and area by unrelated densities: 
 

ds = δ1 ds0,  dA = δ2 dA0. 
 
If the two densities are equal, δ1 = δ2 = Ψ, the result is simply called a surface with 
density Ψ. Surfaces with density appear throughout mathematics, including probability 
theory and Perelman’s recent proof of the Poincaré Conjecture [M1, Chap. 18]. Important 
examples include quotients of Riemannian manifolds by symmetries and Gauss space, 
defined as Rn with Gaussian density  c exp(−r2). 
 Perelman’s paper and many other applications require generalizations of 
curvature to general dimensional surfaces with densities. In higher dimensions, the 
important intrinsic curvature is the so-called Ricci curvature, for which many 
generalizations have been proposed, each for its own purpose, one particular choice 
employed by Perelman (see [M1, §18.3] and references therein). In 2006 Corwin et al. 
[CHHSX, §5] proposed a generalization of Gauss curvature and the Gauss-Bonnet 
formula to surfaces with density Ψ. In principle, their definition generalizes to surfaces 
with length density δ1 and area density δ2 by a conformal change of metric. The 
following proposition gives a simple, direct presentation of that generalization. The 
generalized Gauss curvature is given by 
 

G ' = G ! " log#1 . 
 

An intriguing feature is that G’ depends only on the length density δ1, not on the 
area density δ2. For a conformal change of metric (δ1 = λ, δ2 = λ2), (1) below agrees 
with the standard Gauss-Bonnet formula: the first integrand becomes κλds0 = κ ds 
and the second integrand becomes the new Gauss curvature G´λ2dA0 = G´dA 
because G´ = G−Δ log λ)/λ2 [DFN, Thm. 13.1.3].  
  For a disc with density (the case δ2 = δ1), (1) agrees with the formula of Corwin 
et al. [CHHSX, Prop. 5.2]. For a disc with area density (the case δ1 = 1), (1) agrees with 
the formula of Carroll et al. [CJQW, Prop. 3.3]. 
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 There are other possible generalizations of Gauss curvature to 
surfaces with density, for example coming from the power series expansions 
for the area and perimeter of geodesic balls [CHHSX, Props. 5.8, 5.9]. 
 
Proposition. Consider a smooth Riemannian disc D with Gauss curvature G, length 
density δ1, area density δ2, classical boundary curvature κ0 (inward normal), and hence 
generalized boundary curvature 
 

κ = (δ1/δ2)κ0 − (1/δ2) dδ1/dn. 
 
Then 
 
(1)   !2 /!1( )"

#D$ ds0 + G % & log!1( )
D
$ dA0 = 2' . 

 
Proof. We begin by explaining the formula for κ. The geometric interpretation of 
curvature is minus the rate of change of length per change in enclosed area as you deform 
the curve normal to itself [CHHSX, Prop. 3.2]. First of all the densities weight this effect 
by δ1/δ2. There is a second effect due to the rate of change dδ1/dn of the length density in 
the normal direction, divided again by the area density δ2. 
 To prove (1), first consider the conformal metric ds = λ ds0, with curvature  
 

κ′ = (1/λ)κ0 − (1/λ2) dλ/dn. 
 
Then 
 
  ∫∂D κ′ ds =  ∫∂D κ ds0 −  ∫∂D d log λ/dn ds0 
 
 = 2π − ∫D G dA0 + ∫D Δ log λ dA0 

 

 = 2π − ∫D (G − Δ log λ) dA0 , 
 
the asserted formula (1) for the case δ1 = λ, δ2 = λ2. From another perspective, given the 
Gauss-Bonnet formula in Riemannian surfaces, this is a very easy computation of how 
Gauss curvature changes under a conformal change of metric. 
 The general case follows, because multiplying the area density by  µ = δ2/δ1

2 
multiplies the curvature by 1/µ = δ1

2/δ2 and hence leaves formula (1) unchanged. 
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Brief Descriptive Summary 
 

The celebrated Gauss-Bonnet formula has a nice generalization to surfaces with densities, 
in which both arclength and area are weighted by positive functions. Surfaces with 
densities, especially when arclength and area are weighted by the same factor, appear 
throughout mathematics, including probability theory and Perelman’s recent proof of the 
Poincaré Conjecture. 
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