
October 16, 2009. To appear in The Mathematical Intelligencer, October, 2009. 
Web version with Appendix.  1 

 
Baserunner’s Optimal Path 

 
By Davide Carozza, Stewart Johnson, and Frank Morgan 

 
 When you hit that final long ball in the World Series of Baseball and know you 
need the home run, what is your optimal path around the bases? If you run straight for 
first, you either have to slow to a near stop or go sailing far beyond into the outfield. The 
standard recommended “banana” path follows the baseline maybe halfway and then veers 
a bit to the right to come at first base from a better angle to continue towards second. 
That cannot be ideal. It would have been better to start at an angle to the right to head 
directly to an outer point on the banana path.  
 So what is the optimal path? Using a very simple model, we obtain the path of 
Figure 1. You start out heading about 25˚ right of the base line and run with acceleration 
of constant maximum magnitude σ, as illustrated by the vectors decorating the path. You 
slow down a bit coming into first, hit a local maximum speed as you cross second, and 
start the final acceleration home a bit before crossing third base (see Figure 2). The total 
time around the bases is about 52.7/√σ, about 16.7 seconds for σ = 10 ft/sec2, about 25% 
faster than following the baseline for 22.2 seconds (coming to a full stop at 1st, 2nd, and 
3rd base) and about 6% faster than following a circular path for 17.8 seconds. The record 
time according to Guiness [G] is 13.3 seconds, set by Evar Swanson at Columbus, Ohio 
in 1932. His average speed around the bases was about 18.5 mph or 27 ft/sec. 
 Is it legal to run so far outside the base path? The relevant official rule of Baseball 
says:   
 

7.08 Any runner is out when— 
  (a) (1) He runs more than three feet away from his baseline to avoid being 
tagged unless his action is to avoid interference with a fielder fielding a batted 
ball. A runner’ s baseline is established when the tag attempt occurs and is a 
straight line from the runner to the base he is attempting to reach safely.     

 
The rule just says that after a tag attempt the runner cannot deviate more than three feet 
from a straight line from that point. The rule doesn’t apply until the slugger is almost 
home, when our fastest path is nearly straight. So our path is legal. 
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Figure 1. Second picture shows the fastest path around the bases given a bound σ on the 
magnitude of the acceleration vector, shown at each point. First picture from 

http://www.bsideblog.com/images/2008/03/baseball-diamond.jpg. 
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Figure 2. Speed as a function of time. For σ = 10 ft/sec2, each unit of time represents 3 seconds 
and each unit of velocity represents 30 ft/sec. The times for each segment are about 5.1,  4.1,  4.4, 

and 3.1 seconds, for a total of about 16.7 seconds. 
 
 Our model simply assumes a bound σ on the magnitude of the baserunner’s 
acceleration (which includes deceleration and curvature). The locus of the fastest path 
around the bases is independent of σ because you can scale velocity by λ, acceleration by 
λ2, and time by 1/ λ. So slow runners should follow the same route as fast ones. At first 
you might think that a very slow, awkward runner should just walk directly from base to 
base, except that he’d likely fall down trying to make the sharp turn at first.  
 
 To find the fastest path around the bases, we consider the simpler problem of 
finding the fastest path between two points, given the initial and final velocities, which 
has a unique solution. Intriguingly enough, for this problem, total time is not continuous 
in the prescribed conditions. Even on the line, consider starting at the origin with initial 
velocity 1 and going at maximal acceleration for a second, ending with velocity 2; now if, 
instead, the prescribed final velocity were increased a bit, you would have to start out by 
decelerating to velocity 0, go backwards to well left of the origin, and then accelerate right to 
the terminus. . (See Remark after Lemma 1. Fortunately time is lower-semicontinuous, 
which is what we need to prove the existence of fastest paths.) 
 
 For a critical path between bases, the acceleration has constant magnitude σ and 
remarkably is given by At + B normalized, for some constant vectors A, B. In velocity 
space, such paths are portions of catenaries (the famous least-energy shape of hanging 
cables as for suspension bridges), which in general can be absolute minima, local 
minima, or unstable critical points (see Remarks after Lemma 2). 
 
 It is easy to see that a fastest path for bounded |a| also minimizes max |a| for 
given time, since if you could reduce max |a|, then by increasing speed along an 
appropriate portion of the locus in space, you could reduce time. There are, however, 
more solutions to the second problem. In the example at the end of the Remarks after 
Lemma 2, all three paths minimize max |a| for given times T1 < T2 < T3. 
 
 Given the fastest path between bases for prescribed velocities, we find the shortest 
path around the bases by minimizing over all choices of velocity at the bases, specifying 
velocity 0 at the start. We think that the solution is unique, but we know no proof. 
 
 Our model is, of course, an oversimplified one, since it assumes that maximum 
deceleration equals maximum acceleration and that maximum acceleration remains 
possible at high speeds; taking σ = 10 ft/sec2, it leads to a final speed coming into home 
of about 42 ft/sec, faster than the highest recorded human speed as of August 2009 of 
40.5 ft/sec by Usain Bolt, even though his initial acceleration exceeded 18 ft/sec2 [S]. 
 
Acknowledgements. This work stemmed from a Williams College undergraduate 
colloquium talk by Carozza advised by Morgan. Johnson, who was in the audience, 
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discovered the remarkably simple critical condition and computed the fastest path of 
Figure 1. Morgan acknowledges NSF support.  
 
 

2. Fastest Paths 
 
Lemmas 1 and 2 provide existence and structure for the shortest path between two bases, 
given initial and final velocities. Proposition 1 considers the full baserunner problem with 
all four bases. We conclude by explaining our numerical solution of Figure 1. 
 
Lemma 1. There exists a fastest path from one point to another in the plane, given initial 
velocity, final velocity, and a bound σ > 0 on the acceleration. The minimum time is a 
lower-semicontinuous function of the initial and final positions and velocities. 
 
Remark. The minimum time is not continuous in the prescribed conditions. For example, 
for σ = 1, the fastest path from (0, 0) to (v0 + 1/2, 0) with initial velocity v0 > 0 and final 
velocity v0 + 1 + ε is for ε = 0 simply forward motion for 1 second at unit acceleration, 
but for small ε > 0 one must decelerate for v0 seconds to velocity 0 at (.5 v0

2, 0), move 
backwards, accelerating and decelerating for another √2 v0 seconds to come to rest just 
left of (0, 0), and then move forward for a bit more than a second at unit acceleration, for 
total time a bit more than 1 + v0(1+√2) seconds, a huge discontinuity if v0 is large. See 
Figure 3 for the case v0 = 1.  In summary, to increase the final velocity of a linear path 
with maximum acceleration involves backing up and a discontinuous increase in total 
time. 
 
 

 
Figure 3. As the prescribed final velocity increases past that obtained by constant maximum acceleration, 

the fastest path has to back up, with a discontinuous increase in total time. 
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Proof of Lemma 1. First we note that there exists some path satisfying the conditions. If 
the given velocities are 0, this is obvious. Otherwise just follow the given initial direction 
with maximum negative acceleration until obtaining velocity 0, and similarly backwards 
from the terminal point, to reduce to the obvious case. This path bounds the minimum 
time and hence the positions and velocities. Except for the trivial case when the initial 
and final position and velocities coincide, there is also a lower bound on the total time. 
 To prove simultaneously existence and lower-semicontinuity in the prescribed 
conditions, consider a sequence of paths with conditions converging to the prescriptions 
and times Ti converging to the infimum T. We may assume that the velocities are 
bounded functions from [0, Ti] into R2 with Lipschitz constant at most σ and that Ti ≤ 2T. 
Rescale time to change the domain to [0, T]. Now each velocity has Lipschitz constant at 
most σTi/T ≤ 2σ and the conditions still converge to the prescriptions. By the 
compactness of uniformly bounded Lipschitz functions, we may assume that the 
velocities and hence the paths converge; the limit has time T as desired. 
 
Lemma 2. For a fastest C1,1 path from one point to another in the plane, given initial 
velocity, final velocity, and a bound σ > 0 on the magnitude of the acceleration a, 
 

a = !
At + B

At + B  

for some constant vectors A, B. Such a fastest path is unique. 
 
Remarks. By a translation in time, we may assume that B⋅A = 0 and that A is a unit 
vector. The path is real-analytic in time unless B = 0 and t = 0, when a flips direction. In 
addition the path in space can have a singularity where the velocity vanishes, as in Figure 
4b.  
 Up to rotation and translation in the plane and scaling in time and space, we may 
assume that 
 

 a =
(1,t)

1+ t
2

 , 

 v = (arcsinh t, 1+ t
2 ) + v0 , 

 
 x = (t arcsinh t − 1+ t

2 , .5 t 1+ t
2 + .5 arcsinh t) + v0 t , 

 
pictured for v0 = 0, v0 = −(0,1), v0 = −(0,10), and v0 = − (1,0) in Figure 4; or in the 
degenerate case 
 
 a = (sign t = ±1, 0) , 
 
 v = (−1 ±t, 0) + v0 , 
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 x = (−t ± .5t2, 0) + v0t, 
 
pictured for v0 = −(0,1) in Figure 5. 
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Figure 4. (A,B,C,D) Some critical paths with acceleration At+B normalized. 
 
 

 
 

Figure 5. A symmetric critical path with acceleration ±(0,1), 
which is the special case A = (0,1), B = 0. 
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 Some such critical paths are not minimizing. Indeed, the translation in velocity 
space of a minimizer need not be minimizing. For example, for σ = 1, the following path 
P is minimizing, but its translation P´ by v0 = (1, 0) is not. The path P starts at (0, 0), 
accelerates left for 1 second to (−1/2, 0), decelerates for 1 second to (−1, 0), and then 
accelerates to the right for 2 seconds, ending up at (1, 0) with velocity (2, 0). Its 
translation P´ starts at (0, 0) with velocity (1, 0), decelerates for 1 second to (1/2, 0) and 
velocity (0, 0), and then accelerates for 3 seconds ending up at (5, 0) with velocity (3, 0), 
for a total time of 4 seconds. A minimizer P˝ accelerates for √10 − 1 seconds and then 
decelerates for √10 − 3 seconds for a total time of 2√10 – 4 ≈ 2.32 seconds. In summary,  
the translation P´ of a backtracking minimizer P may decelerate unnecessarily and fail to 
be minimizing. 
 Note that up to translation, rotation, and scaling, the path in velocity space is the 
famous catenary v = cosh u or in the degenerate case a line. It is well known that such 
paths minimize energy ∫ v dt = Δy for given length σ Δt. 
 There are relative minima which are not absolute minima. Consider given 
velocities (−1, 1), (1, 1) and change in position (0, Δy) vertical. Possible paths in velocity 
space are catenaries (or horizontal lines), a 1-parameter family. A horizontal line yields 
minimum time, but a catenary v = a cosh (u/a) yields local minimum Δy. Rotating such a 
catenary about the u-axis generates the famous minimal catenoid surface, with area 2π 
times the potential energy ∫ v dt = Δy of the catenary. It is well known that for two 
relatively close congruent vertical circles about the same horizontal axis there are two 
catenoids, a slightly bowed area minimum and a deeply bowed unstable one [N]. Bowing 
upward from the catenary generator of the stable catenoid, Δy increases; time decreases to 
the horizontal line, then increases. Downward, time increases; Δy decreases to the 
generator of the stable catenoid, then increases to the generator of the unstable catenoid, 
then decreases, eventually going very negative. So Δy values between the generators of 
the two catenoids are obtained three times, with times T1 < T2 < T3. All have the same σ. 
The first is the global minimum. The third is a local minimum, since by the energy-
minimizing property of the catenary, decreasing time requires increasing Δy. 
 All three paths minimize max |a| for given time, because if you could reduce 
max |a| for given time, you could rescale to reduce time and Δy in the same proportion 
instead, but for reduced time, the minimum Δy is the catenary in velocity space, for 
which Δy (the potential energy of the catenary) is reduced less than proportionately, 
because the average value of velocity increases. 
 
Proof of Lemma 2. For variable position x(t) in C1,1 and variable acceleration a(t) in L∞, 
we want to minimize 

dt

0

T

!  

 
subject to the constraints  !!x = a  (a.e.) and |a| ≤ σ. Since T is smooth in a, for some 
Lagrange multiplier λ(t), a minimizer is a critical point for ∫ H dt  where 
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H = 1+ !i(a " !!x) . 

 
The Euler conditions of vanishing first variation (see e.g. [M, 29.2]) say first that weakly 
 

 

0 =
!H

!x
"
d

dt

!H

!!x
+
d
2

dt
2

!H

!!!x
= 0 " 0 " !!# , 

 
so that −λ = At + B for constant vectors A, B and second that 0 ≤ ∂H/∂a. Since a is 
constrained to lie in the disc of radius σ, this second condition just says that  
 

a = −σλ/|λ| = σ(At+B)/|At+B| . 
 
 Suppose that there were two fastest paths x1(t), x2(t). Then their average x3(t) 
would also be a fastest path. Since the acceleration a3(t) must like a1 and a2 have constant 
length σ, a1 = a2 and x1 = x2. 
 
Proposition 1. Given σ > 0 and points x1, x2, …, xn in R2 and optionally velocities v1, vn, 
there is a fastest path from x1 to xn passing in order through x2, …, xn-1 with initial 
velocity v0, final velocity vn, and acceleration bounded by σ. The acceleration is 
continuous of magnitude σ, with at most one possible exception from xk to xk+1: it may 
flip direction between xk and xk+1 or it may change discontinuously at xk or xk+1; the 
former can occur only if a is otherwise constant along the segment (as it is on the last 
segment), the latter only if a is constant along both incident segments. (If no velocities 
are prescribed, we must assume that the points do not lie in order along a line, the one 
case in which arbitrarily small time is possible.)  
 
Proof. Since the set of all possible velocities at the points xi is compact, existence follows 
from Lemma 1. Lemma 2 implies the asserted regularity except at the points x2, …, xn-1. 
Free velocity at xi adds a boundary term 
 

 
!i"v]

x
i
#

x
i
+  

 
to the first variation, so that the Lagrange multiplier λ is continuous at xi. Therefore the 
acceleration a = λ/|λ| is continuous at xi, unless λ(xi) = 0, in which case a is constant on 
both incident segments. At xn, λ = 0, so on the last segment λ = B(t−tn) (see Remarks 
after Lemma 2), and a is constant on the last segment, except possibly for a flip. 
 
The fastest path (see Figure 1). Computing the fastest path proceeds in two steps. First, 
for prescribed velocities at two sequential bases, we use Lemma 2, a finite difference 
boundary value method  [F, §14.2], and multidimensional Newton’s method [F, §7.1] to 
find a solution with velocities that match the prescriptions. This problem can be highly 
non-linear, and requires close guesses for Newton’s method to converge, which we 
achieved by deforming an easily computed symmetric path. Second we minimize total 
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time over varied choices of prescribed velocities at the bases as in the proof of 
Proposition 1, which we achieve with a gradient descent method [F, §7.2]. Since there is 
no general uniqueness result for relative minima, we cannot be sure that our solution 
reflects a global minimum. Our MATLAB code is given in the Appendix. 
 Figure 6 shows the fastest path to 2nd base for a double, taking 10.4 seconds for σ 
= 10 ft/sec2, as compared to 12 seconds along the baseline, coming to a full stop at 1st and 
2nd base. The runner slows down a bit before rounding 1st base. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The fastest path to 2nd base. 
 

 
Appendix 

 
MATLAB code for computing the fastest path around the bases, with segments and 

acceleration both normalized to 1. 
 
% compute and display optimal path around bases 
% Stewart Johnson 2009 
 

 
%% Main baserunner function 
 
function baserunner() 
 
% Set up variables 
clear 
global N L FLCoords1 FLCoords2 FLCoords3  
 
% resolution 
N= 120; 
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%ODE Matrix 
M= -2*diag(ones(N-1,1))+diag(ones(N-2,1),1)+diag(ones(N-2,1),-1); 
L=inv(M); 
 
% Initial guess for velocities at bases 
Varray= [0.5807 0.4725 0.6520 0.6089 0.3733 0.6152]; 
 
% Initial guess for the values of A=(a1 a2), B=(b1,1), and T 
FLCoords1 =[ 0.6349 -0.4667 -0.9490 1.6870]; 
FLCoords2 =[-0.2672  0.9950 -1.1814 1.3642]; 
FLCoords3 =[ 0.5039  0.9695 -1.9015 1.4726]; 
 
% Gradient descent on total time 
 
for iter=1:100 
    iter 
    del= .0001; 
     
    Grad(1)= (TargetsToTime(Varray + [del 0 0 0 0 0])- TargetsToTime(Varray - [del 0 0 
0 0 0]))/(2*del); 
    Grad(2)= (TargetsToTime(Varray + [0 del 0 0 0 0])- TargetsToTime(Varray - [0 del 0 
0 0 0]))/(2*del); 
    Grad(3)= (TargetsToTime(Varray + [0 0 del 0 0 0])- TargetsToTime(Varray - [0 0 del 
0 0 0]))/(2*del); 
    Grad(4)= (TargetsToTime(Varray + [0 0 0 del 0 0])- TargetsToTime(Varray - [0 0 0 
del 0 0]))/(2*del); 
    Grad(5)= (TargetsToTime(Varray + [0 0 0 0 del 0])- TargetsToTime(Varray - [0 0 0 0 
del 0]))/(2*del); 
    Grad(6)= (TargetsToTime(Varray + [0 0 0 0 0 del])- TargetsToTime(Varray - [0 0 0 0 
0 del]))/(2*del); 
     
    Varray= Varray - .01*Grad; 
   
end 
 
% Display results 
Report(Varray) 
 
% Done 
return 
 
 
%% Velocity targets to total time function. 
 
function TotalTime=TargetsToTime(V) 
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global FLCoords1 FLCoords2 FLCoords3 
 
A1=V(1); 
B1=V(2); 
A2=V(3); 
B2=V(4); 
A3=V(5); 
B3=V(6); 
 
%%% Home to First %%%%%%%%%%%%%%%%%%%%%  
Target1= [0.0,0.0,A1,B1]; 
FLCoords1= MatchCoords(FLCoords1,Target1,20); 
T1= FLCoords1(4); 
 
%%% First to Second %%%%%%%%%%%%%%%%%%% 
Target2= [B1,-A1,A2,B2]; 
FLCoords2= MatchCoords(FLCoords2,Target2,20); 
T2= FLCoords2(4); 
 
%%% Second to Home %%%%%%%%%%%%%%%%%%%% 
Target3= [B2,-A2,A3,B3]; 
FLCoords3= MatchCoords(FLCoords3,Target3,20); 
T3= FLCoords3(4); 
 
%%%Third to Home %%%%%%%%%%%%%%%%%%%%%% 
Phi=  B3; 
Mu=  -A3; 
R=roots([.25 0 -Mu^2-Phi^2 2*Phi -1]); 
T4=0; 
for i=1:length(R) 
    r= R(i); 
    if imag(r)==0 && r>0 && r<2  
        T4=r; 
    end 
end 
 
% Done 
TotalTime= T1+T2+T3+T4; 
return 
 
%% Graphics & Report 
 
function Report(V) 
 
global N FLCoords1 FLCoords2 FLCoords3 
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figure 
hold on 
 
%%% Graph H->1 %%%%%%%%%%%%%%%%%%%%%%%% 
a= FLCoords1(1); 
b= FLCoords1(2); 
c= FLCoords1(3); 
d=1.0; 
%plot path 
[alph1, bet1, alph2, bet2, X, Y]=abcSfun(FLCoords1); 
T1= FLCoords1(4); 
plot(1-X,1-Y) 
%plot acceleration 
T= linspace(0,T1,N+1); 
D= sqrt((a*T+b).^2 + (c*T+d).^2); 
F= (c*T+d)./D; 
G= (a*T+b)./D; 
for i=1:N+1 
    plot([1-X(i),1-X(i)+.1*F(i)],[1-Y(i),1-Y(i)+.1*G(i)],'r') 
end 
plot(1-X,1-Y,'k*') 
% compute speed 
for i=1:N 
    Sp(i)= sqrt( (X(i+1)-X(i))^2 + (Y(i+1)-Y(i))^2 )*N/T1; 
    Tm(i)= T(i); 
end 
 
%%% Graph 1->2 %%%%%%%%%%%%%%%%%%%%%%%% 
a= FLCoords2(1); 
b= FLCoords2(2); 
c= FLCoords2(3); 
d=1.0; 
%plot path 
[alph1, bet1, alph2, bet2, X, Y]=abcSfun(FLCoords2); 
T2= FLCoords2(4); 
plot(Y,1-X) 
%plot acceleration 
T= linspace(0,T2,N+1); 
D= sqrt((a*T+b).^2 + (c*T+d).^2); 
F= (c*T+d)./D; 
G= (a*T+b)./D; 
for i=1:N+1 
    plot([Y(i),Y(i)-.1*G(i)],[1-X(i),1-X(i)+.1*F(i)],'r') 
end 
plot(Y,1-X,'k*') 
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%compute speed 
for i=1:N 
    Sp(i+N)= sqrt( (X(i+1)-X(i))^2 + (Y(i+1)-Y(i))^2 )*N/T2; 
    Tm(i+N)= T(i) + Tm(N); 
end 
 
%%% Graph 2->3 %%%%%%%%%%%%%%%%%%%%%%%% 
a= FLCoords3(1); 
b= FLCoords3(2); 
c= FLCoords3(3); 
d=1.0; 
%plot path 
[alph1, bet1, alph2, bet2, X, Y]=abcSfun(FLCoords3); 
T3= FLCoords3(4); 
plot(X,Y) 
%plot acceleration 
T= linspace(0,T3,N+1); 
D= sqrt((a*T+b).^2 + (c*T+d).^2); 
F= (c*T+d)./D; 
G= (a*T+b)./D; 
for i=1:N+1 
    plot([X(i),X(i)-.1*F(i)],[Y(i),Y(i)-.1*G(i)],'r') 
end 
plot(X,Y,'k*') 
%compute speed 
for i=1:N 
    Sp(i+2*N)= sqrt( (X(i+1)-X(i))^2 + (Y(i+1)-Y(i))^2 )*N/T3; 
    Tm(i+2*N)= T(i) + Tm(2*N); 
end   
 
%%% Graph 3->h %%%%%%%%%%%%%%%%%%%%%%%% 
Phi=  V(6); 
Mu=  -V(5); 
R=roots([.25 0 -Mu^2-Phi^2 2*Phi -1]); 
T4=0; 
for i=1:length(R) 
    r= R(i); 
    if imag(r)==0 && r>0 && r<2  
        T4=r; 
    end 
end 
%plot path 
T= linspace(0,T4,N+1); 
X= (T/T4).^2*(-Phi*T4+1)+Phi*T; 
Y= (T/T4).^2*(-Mu*T4)   +Mu*T; 
plot(1-Y,X) 
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plot(1-Y,X,'k*') 
%plot acceleration 
d1= 2*(-Phi*T4+1)/T4^2; 
d2= 2*(-Mu*T4)/T4^2; 
for i=1:N+1 
    plot([1-Y(i),1-Y(i)+.1*d2],[X(i),X(i)-.1*d1],'m') 
end 
%compute speed 
for i=1:N 
    Sp(i+3*N)= sqrt( (X(i+1)-X(i))^2 + (Y(i+1)-Y(i))^2 )*N/T4; 
    Tm(i+3*N)= T(i) + Tm(3*N); 
end   
 
%%% Plot bases & preen %%%%%%%%%%%%%%%% 
plot(1,0,'ko'); 
plot(1,1,'ko'); 
plot(0,0,'ko'); 
plot(0,1,'ko'); 
axis([-.6 1.6 -.6 1.6]); 
axis equal 
hold off 
 
%%% Plot speed graph %%%%%%%%%%%%%%%%%% 
figure 
hold on 
plot(Tm,Sp); 
plot([Tm(N) Tm(2*N) Tm(3*N)],[Sp(N) Sp(2*N) Sp(3*N)],'bo');  
hold off 
     
% Done 
return 
 
%% abcSfun() for boundary value problem  
% Given At+B and time S, solve ODE for path from (0,0) to (1,0),  
% and report start and end velocities   
 
function [alph1, bet1, alph2, bet2, X, Y ]= abcSfun(FLC) 
 
global N L 
 
a= FLC(1); 
b= FLC(2); 
c= FLC(3); 
d=1.0; 
 
S= FLC(4); 
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T= linspace(0,S,N+1); 
D= sqrt((a*T+b).^2 + (c*T+d).^2); 
 
F= (S/N)^2*(c*T+d)./D; 
F(N)= F(N)-1; 
 
G= (S/N)^2*(a*T+b)./D; 
 
X(1)= 0; 
X(N+1)= 1; 
X(2:N)= L * F(2:N)'; 
 
Y(1)= 0; 
Y(N+1)= 0; 
Y(2:N)= L * G(2:N)'; 
 
alph1= (X(2)-X(1))*N/S; 
alph2= (X(N+1)-X(N))*N/S; 
 
bet1= (Y(2)-Y(1))*N/S; 
bet2= (Y(N+1)-Y(N))*N/S; 
 
return  
 
%% Compute jacobian for abcSfun() 
 
function J= abcSjako(FLC) 
 
del= .1; 
 
[alph1a bet1a alph2a bet2a]= abcSfun(FLC-[del 0 0 0]); 
[alph1c bet1c alph2c bet2c]= abcSfun(FLC+[del 0 0 0]); 
J(1:4,1)=([alph1c bet1c alph2c bet2c]-[alph1a bet1a alph2a bet2a])/(2*del); 
 
[alph1a bet1a alph2a bet2a]= abcSfun(FLC-[0 del 0 0]); 
[alph1c bet1c alph2c bet2c]= abcSfun(FLC+[0 del 0 0]); 
J(1:4,2)=([alph1c bet1c alph2c bet2c]-[alph1a bet1a alph2a bet2a])/(2*del); 
 
[alph1a bet1a alph2a bet2a]= abcSfun(FLC-[0 0 del 0]); 
[alph1c bet1c alph2c bet2c]= abcSfun(FLC+[0 0 del 0]); 
J(1:4,3)=([alph1c bet1c alph2c bet2c]-[alph1a bet1a alph2a bet2a])/(2*del); 
 
[alph1a bet1a alph2a bet2a]= abcSfun(FLC-[0 0 0 del]); 
[alph1c bet1c alph2c bet2c]= abcSfun(FLC+[0 0 0 del]); 
J(1:4,4)=([alph1c bet1c alph2c bet2c]-[alph1a bet1a alph2a bet2a])/(2*del); 
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return 
 
%% Newtons method for matching FLCoords to velocities 
% Highly nonlinear problem. Need close guess. 
 
function FLCoordsMatch= MatchCoords(FLCoords,Target,iter) 
 
for i=1:iter 
    [alph1, bet1, alph2, bet2]=abcSfun(FLCoords); 
    Del= abcSjako(FLCoords)\[Target(1)-alph1; Target(2)-bet1; Target(3)-alph2; 
Target(4)-bet2]; 
    FLCoords = FLCoords + Del'; 
end 
 
FLCoordsMatch= FLCoords; 
 
return 
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