The Effect of Redshift on Observed Quantities

Definitions:
$$redshift = z = \frac{\Box \Box}{\Box} = \frac{\Box_{now} \Box \Box_z}{\Box_z}$$
 $1 + z = \frac{\Box_{observed}}{\Box_{emitted}}$

<u>Remember</u>: We always observe from a redshift of ZERO! Higher redshift means we are looking farther away and longer ago.

Scale Factor:

We observe **now**, when the scale factor of the universe is \mathbf{R}_{now} . An object we observe at redshift \mathbf{z} emitted its light long ago when the universe had scale factor $\mathbf{R}_{\mathbf{z}}$.

The relationship between these scale factors is $\frac{R_{now}}{R_z} = 1 + z$. The universe is larger now than it was at redshift z.

Wavelength:

The wavelength we observe now is related to the emitted wavelength by $\frac{\prod_{now}}{\prod_{z}} = 1 + z$. Wavelengths are stretched out by the expansion of the universe.

Temperature:

The temperature of the background radiation now as compared with its temperature at a redshift of z is $\frac{T_{now}}{T_z} = \frac{1}{1+z}$. The universe is cooler now than it was at redshift z.

Therefore we can also see the following relationships:

$$\frac{R_{now}}{R_z} = \frac{\prod_{now}}{\prod_z} = \frac{T_z}{T_{now}}.$$